
ï»¿

Internet Engineering Task Force (IETF) å¥¥ ä¸\200ç©\202 (K. Oku)
Request for Comments: 9218 Fastly
Category: Standards Track L. Pardue
ISSN: 2070-1721 Cloudflare
 June 2022

 Extensible Prioritization Scheme for HTTP

Abstract

 This document describes a scheme that allows an HTTP client to
 communicate its preferences for how the upstream server prioritizes
 responses to its requests, and also allows a server to hint to a
 downstream intermediary how its responses should be prioritized when
 they are forwarded. This document defines the Priority header field
 for communicating the initial priority in an HTTP version-independent
 manner, as well as HTTP/2 and HTTP/3 frames for reprioritizing
 responses. These share a common format structure that is designed to
 provide future extensibility.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9218.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Revised BSD License text as described in Section 4.e of the
 Trust Legal Provisions and are provided without warranty as described
 in the Revised BSD License.

Table of Contents

 1. Introduction
 1.1. Notational Conventions
 2. Motivation for Replacing RFC 7540 Stream Priorities
 2.1. Disabling RFC 7540 Stream Priorities
 2.1.1. Advice when Using Extensible Priorities as the
 Alternative
 3. Applicability of the Extensible Priority Scheme
 4. Priority Parameters
 4.1. Urgency
 4.2. Incremental
 4.3. Defining New Priority Parameters
 4.3.1. Registration
 5. The Priority HTTP Header Field
 6. Reprioritization
 7. The PRIORITY_UPDATE Frame

 7.1. HTTP/2 PRIORITY_UPDATE Frame
 7.2. HTTP/3 PRIORITY_UPDATE Frame
 8. Merging Client- and Server-Driven Priority Parameters
 9. Client Scheduling
 10. Server Scheduling
 10.1. Intermediaries with Multiple Backend Connections
 11. Scheduling and the CONNECT Method
 12. Retransmission Scheduling
 13. Fairness
 13.1. Coalescing Intermediaries
 13.2. HTTP/1.x Back Ends
 13.3. Intentional Introduction of Unfairness
 14. Why Use an End-to-End Header Field?
 15. Security Considerations
 16. IANA Considerations
 17. References
 17.1. Normative References
 17.2. Informative References
 Acknowledgements
 Authors’ Addresses

1. Introduction

 It is common for representations of an HTTP [HTTP] resource to have
 relationships to one or more other resources. Clients will often
 discover these relationships while processing a retrieved
 representation, which may lead to further retrieval requests.
 Meanwhile, the nature of the relationships determines whether a
 client is blocked from continuing to process locally available
 resources. An example of this is the visual rendering of an HTML
 document, which could be blocked by the retrieval of a Cascading
 Style Sheets (CSS) file that the document refers to. In contrast,
 inline images do not block rendering and get drawn incrementally as
 the chunks of the images arrive.

 HTTP/2 [HTTP/2] and HTTP/3 [HTTP/3] support multiplexing of requests
 and responses in a single connection. An important feature of any
 implementation of a protocol that provides multiplexing is the
 ability to prioritize the sending of information. For example, to
 provide meaningful presentation of an HTML document at the earliest
 moment, it is important for an HTTP server to prioritize the HTTP
 responses, or the chunks of those HTTP responses, that it sends to a
 client.

 HTTP/2 and HTTP/3 servers can schedule transmission of concurrent
 response data by any means they choose. Servers can ignore client
 priority signals and still successfully serve HTTP responses.
 However, servers that operate in ignorance of how clients issue
 requests and consume responses can cause suboptimal client
 application performance. Priority signals allow clients to
 communicate their view of request priority. Servers have their own
 needs that are independent of client needs, so they often combine
 priority signals with other available information in order to inform
 scheduling of response data.

 RFC 7540 [RFC7540] stream priority allowed a client to send a series
 of priority signals that communicate to the server a "priority tree";
 the structure of this tree represents the client’s preferred relative
 ordering and weighted distribution of the bandwidth among HTTP
 responses. Servers could use these priority signals as input into
 prioritization decisions.

 The design and implementation of RFC 7540 stream priority were
 observed to have shortcomings, as explained in Section 2. HTTP/2
 [HTTP/2] has consequently deprecated the use of these stream priority
 signals. The prioritization scheme and priority signals defined
 herein can act as a substitute for RFC 7540 stream priority.

 This document describes an extensible scheme for prioritizing HTTP
 responses that uses absolute values. Section 4 defines priority
 parameters, which are a standardized and extensible format of

 priority information. Section 5 defines the Priority HTTP header
 field, which is an end-to-end priority signal that is independent of
 protocol version. Clients can send this header field to signal their
 view of how responses should be prioritized. Similarly, servers
 behind an intermediary can use it to signal priority to the
 intermediary. After sending a request, a client can change their
 view of response priority (see Section 6) by sending HTTP-version-
 specific frames as defined in Sections 7.1 and 7.2.

 Header field and frame priority signals are input to a server’s
 response prioritization process. They are only a suggestion and do
 not guarantee any particular processing or transmission order for one
 response relative to any other response. Sections 10 and 12 provide
 considerations and guidance about how servers might act upon signals.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document uses the following terminology from Section 3 of
 [STRUCTURED-FIELDS] to specify syntax and parsing: "Boolean",
 "Dictionary", and "Integer".

 Example HTTP requests and responses use the HTTP/2-style formatting
 from [HTTP/2].

 This document uses the variable-length integer encoding from [QUIC].

 The term "control stream" is used to describe both the HTTP/2 stream
 with identifier 0x0 and the HTTP/3 control stream; see Section 6.2.1
 of [HTTP/3].

 The term "HTTP/2 priority signal" is used to describe the priority
 information sent from clients to servers in HTTP/2 frames; see
 Section 5.3.2 of [HTTP/2].

2. Motivation for Replacing RFC 7540 Stream Priorities

 RFC 7540 stream priority (see Section 5.3 of [RFC7540]) is a complex
 system where clients signal stream dependencies and weights to
 describe an unbalanced tree. It suffered from limited deployment and
 interoperability and has been deprecated in a revision of HTTP/2
 [HTTP/2]. HTTP/2 retains these protocol elements in order to
 maintain wire compatibility (see Section 5.3.2 of [HTTP/2]), which
 means that they might still be used even in the presence of
 alternative signaling, such as the scheme this document describes.

 Many RFC 7540 server implementations do not act on HTTP/2 priority
 signals.

 Prioritization can use information that servers have about resources
 or the order in which requests are generated. For example, a server,
 with knowledge of an HTML document structure, might want to
 prioritize the delivery of images that are critical to user
 experience above other images. With RFC 7540, it is difficult for
 servers to interpret signals from clients for prioritization, as the
 same conditions could result in very different signaling from
 different clients. This document describes signaling that is simpler
 and more constrained, requiring less interpretation and allowing less
 variation.

 RFC 7540 does not define a method that can be used by a server to
 provide a priority signal for intermediaries.

 RFC 7540 stream priority is expressed relative to other requests
 sharing the same connection at the same time. It is difficult to
 incorporate such a design into applications that generate requests

 without knowledge of how other requests might share a connection, or
 into protocols that do not have strong ordering guarantees across
 streams, like HTTP/3 [HTTP/3].

 Experiments from independent research [MARX] have shown that simpler
 schemes can reach at least equivalent performance characteristics
 compared to the more complex RFC 7540 setups seen in practice, at
 least for the Web use case.

2.1. Disabling RFC 7540 Stream Priorities

 The problems and insights set out above provided the motivation for
 an alternative to RFC 7540 stream priority (see Section 5.3 of
 [HTTP/2]).

 The SETTINGS_NO_RFC7540_PRIORITIES HTTP/2 setting is defined by this
 document in order to allow endpoints to omit or ignore HTTP/2
 priority signals (see Section 5.3.2 of [HTTP/2]), as described below.
 The value of SETTINGS_NO_RFC7540_PRIORITIES MUST be 0 or 1. Any
 value other than 0 or 1 MUST be treated as a connection error (see
 Section 5.4.1 of [HTTP/2]) of type PROTOCOL_ERROR. The initial value
 is 0.

 If endpoints use SETTINGS_NO_RFC7540_PRIORITIES, they MUST send it in
 the first SETTINGS frame. Senders MUST NOT change the
 SETTINGS_NO_RFC7540_PRIORITIES value after the first SETTINGS frame.
 Receivers that detect a change MAY treat it as a connection error of
 type PROTOCOL_ERROR.

 Clients can send SETTINGS_NO_RFC7540_PRIORITIES with a value of 1 to
 indicate that they are not using HTTP/2 priority signals. The
 SETTINGS frame precedes any HTTP/2 priority signal sent from clients,
 so servers can determine whether they need to allocate any resources
 to signal handling before signals arrive. A server that receives
 SETTINGS_NO_RFC7540_PRIORITIES with a value of 1 MUST ignore HTTP/2
 priority signals.

 Servers can send SETTINGS_NO_RFC7540_PRIORITIES with a value of 1 to
 indicate that they will ignore HTTP/2 priority signals sent by
 clients.

 Endpoints that send SETTINGS_NO_RFC7540_PRIORITIES are encouraged to
 use alternative priority signals (for example, see Section 5 or
 Section 7.1), but there is no requirement to use a specific signal
 type.

2.1.1. Advice when Using Extensible Priorities as the Alternative

 Before receiving a SETTINGS frame from a server, a client does not
 know if the server is ignoring HTTP/2 priority signals. Therefore,
 until the client receives the SETTINGS frame from the server, the
 client SHOULD send both the HTTP/2 priority signals and the signals
 of this prioritization scheme (see Sections 5 and 7.1).

 Once the client receives the first SETTINGS frame that contains the
 SETTINGS_NO_RFC7540_PRIORITIES parameter with a value of 1, it SHOULD
 stop sending the HTTP/2 priority signals. This avoids sending
 redundant signals that are known to be ignored.

 Similarly, if the client receives SETTINGS_NO_RFC7540_PRIORITIES with
 a value of 0 or if the settings parameter was absent, it SHOULD stop
 sending PRIORITY_UPDATE frames (Section 7.1), since those frames are
 likely to be ignored. However, the client MAY continue sending the
 Priority header field (Section 5), as it is an end-to-end signal that
 might be useful to nodes behind the server that the client is
 directly connected to.

3. Applicability of the Extensible Priority Scheme

 The priority scheme defined by this document is primarily focused on
 the prioritization of HTTP response messages (see Section 3.4 of

 [HTTP]). It defines new priority parameters (Section 4) and a means
 of conveying those parameters (Sections 5 and 7), which is intended
 to communicate the priority of responses to a server that is
 responsible for prioritizing them. Section 10 provides
 considerations for servers about acting on those signals in
 combination with other inputs and factors.

 The CONNECT method (see Section 9.3.6 of [HTTP]) can be used to
 establish tunnels. Signaling applies similarly to tunnels;
 additional considerations for server prioritization are given in
 Section 11.

 Section 9 describes how clients can optionally apply elements of this
 scheme locally to the request messages that they generate.

 Some forms of HTTP extensions might change HTTP/2 or HTTP/3 stream
 behavior or define new data carriage mechanisms. Such extensions can
 themselves define how this priority scheme is to be applied.

4. Priority Parameters

 The priority information is a sequence of key-value pairs, providing
 room for future extensions. Each key-value pair represents a
 priority parameter.

 The Priority HTTP header field (Section 5) is an end-to-end way to
 transmit this set of priority parameters when a request or a response
 is issued. After sending a request, a client can change their view
 of response priority (Section 6) by sending HTTP-version-specific
 PRIORITY_UPDATE frames as defined in Sections 7.1 and 7.2. Frames
 transmit priority parameters on a single hop only.

 Intermediaries can consume and produce priority signals in a
 PRIORITY_UPDATE frame or Priority header field. An intermediary that
 passes only the Priority request header field to the next hop
 preserves the original end-to-end signal from the client; see
 Section 14. An intermediary could pass the Priority header field and
 additionally send a PRIORITY_UPDATE frame. This would have the
 effect of preserving the original client end-to-end signal, while
 instructing the next hop to use a different priority, per the
 guidance in Section 7. An intermediary that replaces or adds a
 Priority request header field overrides the original client end-to-
 end signal, which can affect prioritization for all subsequent
 recipients of the request.

 For both the Priority header field and the PRIORITY_UPDATE frame, the
 set of priority parameters is encoded as a Dictionary (see
 Section 3.2 of [STRUCTURED-FIELDS]).

 This document defines the urgency (u) and incremental (i) priority
 parameters. When receiving an HTTP request that does not carry these
 priority parameters, a server SHOULD act as if their default values
 were specified.

 An intermediary can combine signals from requests and responses that
 it forwards. Note that omission of priority parameters in responses
 is handled differently from omission in requests; see Section 8.

 Receivers parse the Dictionary as described in Section 4.2 of
 [STRUCTURED-FIELDS]. Where the Dictionary is successfully parsed,
 this document places the additional requirement that unknown priority
 parameters, priority parameters with out-of-range values, or values
 of unexpected types MUST be ignored.

4.1. Urgency

 The urgency (u) parameter value is Integer (see Section 3.3.1 of
 [STRUCTURED-FIELDS]), between 0 and 7 inclusive, in descending order
 of priority. The default is 3.

 Endpoints use this parameter to communicate their view of the

 precedence of HTTP responses. The chosen value of urgency can be
 based on the expectation that servers might use this information to
 transmit HTTP responses in the order of their urgency. The smaller
 the value, the higher the precedence.

 The following example shows a request for a CSS file with the urgency
 set to 0:

 :method = GET
 :scheme = https
 :authority = example.net
 :path = /style.css
 priority = u=0

 A client that fetches a document that likely consists of multiple
 HTTP resources (e.g., HTML) SHOULD assign the default urgency level
 to the main resource. This convention allows servers to refine the
 urgency using knowledge specific to the website (see Section 8).

 The lowest urgency level (7) is reserved for background tasks such as
 delivery of software updates. This urgency level SHOULD NOT be used
 for fetching responses that have any impact on user interaction.

4.2. Incremental

 The incremental (i) parameter value is Boolean (see Section 3.3.6 of
 [STRUCTURED-FIELDS]). It indicates if an HTTP response can be
 processed incrementally, i.e., provide some meaningful output as
 chunks of the response arrive.

 The default value of the incremental parameter is false (0).

 If a client makes concurrent requests with the incremental parameter
 set to false, there is no benefit in serving responses with the same
 urgency concurrently because the client is not going to process those
 responses incrementally. Serving non-incremental responses with the
 same urgency one by one, in the order in which those requests were
 generated, is considered to be the best strategy.

 If a client makes concurrent requests with the incremental parameter
 set to true, serving requests with the same urgency concurrently
 might be beneficial. Doing this distributes the connection
 bandwidth, meaning that responses take longer to complete.
 Incremental delivery is most useful where multiple partial responses
 might provide some value to clients ahead of a complete response
 being available.

 The following example shows a request for a JPEG file with the
 urgency parameter set to 5 and the incremental parameter set to true.

 :method = GET
 :scheme = https
 :authority = example.net
 :path = /image.jpg
 priority = u=5, i

4.3. Defining New Priority Parameters

 When attempting to define new priority parameters, care must be taken
 so that they do not adversely interfere with prioritization performed
 by existing endpoints or intermediaries that do not understand the
 newly defined priority parameters. Since unknown priority parameters
 are ignored, new priority parameters should not change the
 interpretation of, or modify, the urgency (see Section 4.1) or
 incremental (see Section 4.2) priority parameters in a way that is
 not backwards compatible or fallback safe.

 For example, if there is a need to provide more granularity than
 eight urgency levels, it would be possible to subdivide the range
 using an additional priority parameter. Implementations that do not
 recognize the parameter can safely continue to use the less granular

 eight levels.

 Alternatively, the urgency can be augmented. For example, a
 graphical user agent could send a visible priority parameter to
 indicate if the resource being requested is within the viewport.

 Generic priority parameters are preferred over vendor-specific,
 application-specific, or deployment-specific values. If a generic
 value cannot be agreed upon in the community, the parameter’s name
 should be correspondingly specific (e.g., with a prefix that
 identifies the vendor, application, or deployment).

4.3.1. Registration

 New priority parameters can be defined by registering them in the
 "HTTP Priority" registry. This registry governs the keys (short
 textual strings) used in the Dictionary (see Section 3.2 of
 [STRUCTURED-FIELDS]). Since each HTTP request can have associated
 priority signals, there is value in having short key lengths,
 especially single-character strings. In order to encourage
 extensions while avoiding unintended conflict among attractive key
 values, the "HTTP Priority" registry operates two registration
 policies, depending on key length.

 * Registration requests for priority parameters with a key length of
 one use the Specification Required policy, per Section 4.6 of
 [RFC8126].

 * Registration requests for priority parameters with a key length
 greater than one use the Expert Review policy, per Section 4.5 of
 [RFC8126]. A specification document is appreciated but not
 required.

 When reviewing registration requests, the designated expert(s) can
 consider the additional guidance provided in Section 4.3 but cannot
 use it as a basis for rejection.

 Registration requests should use the following template:

 Name: [a name for the priority parameter that matches the parameter
 key]

 Description: [a description of the priority parameter semantics and
 value]

 Reference: [to a specification defining this priority parameter]

 See the registry at <https://www.iana.org/assignments/http-priority>
 for details on where to send registration requests.

5. The Priority HTTP Header Field

 The Priority HTTP header field is a Dictionary that carries priority
 parameters (see Section 4). It can appear in requests and responses.
 It is an end-to-end signal that indicates the endpoint’s view of how
 HTTP responses should be prioritized. Section 8 describes how
 intermediaries can combine the priority information sent from clients
 and servers. Clients cannot interpret the appearance or omission of
 a Priority response header field as acknowledgement that any
 prioritization has occurred. Guidance for how endpoints can act on
 Priority header values is given in Sections 9 and 10.

 An HTTP request with a Priority header field might be cached and
 reused for subsequent requests; see [CACHING]. When an origin server
 generates the Priority response header field based on properties of
 an HTTP request it receives, the server is expected to control the
 cacheability or the applicability of the cached response by using
 header fields that control the caching behavior (e.g., Cache-Control,
 Vary).

6. Reprioritization

 After a client sends a request, it may be beneficial to change the
 priority of the response. As an example, a web browser might issue a
 prefetch request for a JavaScript file with the urgency parameter of
 the Priority request header field set to u=7 (background). Then,
 when the user navigates to a page that references the new JavaScript
 file, while the prefetch is in progress, the browser would send a
 reprioritization signal with the Priority Field Value set to u=0.
 The PRIORITY_UPDATE frame (Section 7) can be used for such
 reprioritization.

7. The PRIORITY_UPDATE Frame

 This document specifies a new PRIORITY_UPDATE frame for HTTP/2
 [HTTP/2] and HTTP/3 [HTTP/3]. It carries priority parameters and
 references the target of the prioritization based on a version-
 specific identifier. In HTTP/2, this identifier is the stream ID; in
 HTTP/3, the identifier is either the stream ID or push ID. Unlike
 the Priority header field, the PRIORITY_UPDATE frame is a hop-by-hop
 signal.

 PRIORITY_UPDATE frames are sent by clients on the control stream,
 allowing them to be sent independently of the stream that carries the
 response. This means they can be used to reprioritize a response or
 a push stream, or to signal the initial priority of a response
 instead of the Priority header field.

 A PRIORITY_UPDATE frame communicates a complete set of all priority
 parameters in the Priority Field Value field. Omitting a priority
 parameter is a signal to use its default value. Failure to parse the
 Priority Field Value MAY be treated as a connection error. In
 HTTP/2, the error is of type PROTOCOL_ERROR; in HTTP/3, the error is
 of type H3_GENERAL_PROTOCOL_ERROR.

 A client MAY send a PRIORITY_UPDATE frame before the stream that it
 references is open (except for HTTP/2 push streams; see Section 7.1).
 Furthermore, HTTP/3 offers no guaranteed ordering across streams,
 which could cause the frame to be received earlier than intended.
 Either case leads to a race condition where a server receives a
 PRIORITY_UPDATE frame that references a request stream that is yet to
 be opened. To solve this condition, for the purposes of scheduling,
 the most recently received PRIORITY_UPDATE frame can be considered as
 the most up-to-date information that overrides any other signal.
 Servers SHOULD buffer the most recently received PRIORITY_UPDATE
 frame and apply it once the referenced stream is opened. Holding
 PRIORITY_UPDATE frames for each stream requires server resources,
 which can be bounded by local implementation policy. Although there
 is no limit to the number of PRIORITY_UPDATE frames that can be sent,
 storing only the most recently received frame limits resource
 commitment.

7.1. HTTP/2 PRIORITY_UPDATE Frame

 The HTTP/2 PRIORITY_UPDATE frame (type=0x10) is used by clients to
 signal the initial priority of a response, or to reprioritize a
 response or push stream. It carries the stream ID of the response
 and the priority in ASCII text, using the same representation as the
 Priority header field value.

 The Stream Identifier field (see Section 5.1.1 of [HTTP/2]) in the
 PRIORITY_UPDATE frame header MUST be zero (0x0). Receiving a
 PRIORITY_UPDATE frame with a field of any other value MUST be treated
 as a connection error of type PROTOCOL_ERROR.

 HTTP/2 PRIORITY_UPDATE Frame {
 Length (24),
 Type (8) = 0x10,

 Unused Flags (8),

 Reserved (1),

 Stream Identifier (31),

 Reserved (1),
 Prioritized Stream ID (31),
 Priority Field Value (..),
 }

 Figure 1: HTTP/2 PRIORITY_UPDATE Frame Format

 The Length, Type, Unused Flag(s), Reserved, and Stream Identifier
 fields are described in Section 4 of [HTTP/2]. The PRIORITY_UPDATE
 frame payload contains the following additional fields:

 Prioritized Stream ID: A 31-bit stream identifier for the stream
 that is the target of the priority update.

 Priority Field Value: The priority update value in ASCII text,
 encoded using Structured Fields. This is the same representation
 as the Priority header field value.

 When the PRIORITY_UPDATE frame applies to a request stream, clients
 SHOULD provide a prioritized stream ID that refers to a stream in the
 "open", "half-closed (local)", or "idle" state (i.e., streams where
 data might still be received). Servers can discard frames where the
 prioritized stream ID refers to a stream in the "half-closed (local)"
 or "closed" state (i.e., streams where no further data will be sent).
 The number of streams that have been prioritized but remain in the
 "idle" state plus the number of active streams (those in the "open"
 state or in either of the "half-closed" states; see Section 5.1.2 of
 [HTTP/2]) MUST NOT exceed the value of the
 SETTINGS_MAX_CONCURRENT_STREAMS parameter. Servers that receive such
 a PRIORITY_UPDATE MUST respond with a connection error of type
 PROTOCOL_ERROR.

 When the PRIORITY_UPDATE frame applies to a push stream, clients
 SHOULD provide a prioritized stream ID that refers to a stream in the
 "reserved (remote)" or "half-closed (local)" state. Servers can
 discard frames where the prioritized stream ID refers to a stream in
 the "closed" state. Clients MUST NOT provide a prioritized stream ID
 that refers to a push stream in the "idle" state. Servers that
 receive a PRIORITY_UPDATE for a push stream in the "idle" state MUST
 respond with a connection error of type PROTOCOL_ERROR.

 If a PRIORITY_UPDATE frame is received with a prioritized stream ID
 of 0x0, the recipient MUST respond with a connection error of type
 PROTOCOL_ERROR.

 Servers MUST NOT send PRIORITY_UPDATE frames. If a client receives a
 PRIORITY_UPDATE frame, it MUST respond with a connection error of
 type PROTOCOL_ERROR.

7.2. HTTP/3 PRIORITY_UPDATE Frame

 The HTTP/3 PRIORITY_UPDATE frame (type=0xF0700 or 0xF0701) is used by
 clients to signal the initial priority of a response, or to
 reprioritize a response or push stream. It carries the identifier of
 the element that is being prioritized and the updated priority in
 ASCII text that uses the same representation as that of the Priority
 header field value. PRIORITY_UPDATE with a frame type of 0xF0700 is
 used for request streams, while PRIORITY_UPDATE with a frame type of
 0xF0701 is used for push streams.

 The PRIORITY_UPDATE frame MUST be sent on the client control stream
 (see Section 6.2.1 of [HTTP/3]). Receiving a PRIORITY_UPDATE frame
 on a stream other than the client control stream MUST be treated as a
 connection error of type H3_FRAME_UNEXPECTED.

 HTTP/3 PRIORITY_UPDATE Frame {
 Type (i) = 0xF0700..0xF0701,
 Length (i),
 Prioritized Element ID (i),

 Priority Field Value (..),
 }

 Figure 2: HTTP/3 PRIORITY_UPDATE Frame

 The PRIORITY_UPDATE frame payload has the following fields:

 Prioritized Element ID: The stream ID or push ID that is the target
 of the priority update.

 Priority Field Value: The priority update value in ASCII text,
 encoded using Structured Fields. This is the same representation
 as the Priority header field value.

 The request-stream variant of PRIORITY_UPDATE (type=0xF0700) MUST
 reference a request stream. If a server receives a PRIORITY_UPDATE
 (type=0xF0700) for a stream ID that is not a request stream, this
 MUST be treated as a connection error of type H3_ID_ERROR. The
 stream ID MUST be within the client-initiated bidirectional stream
 limit. If a server receives a PRIORITY_UPDATE (type=0xF0700) with a
 stream ID that is beyond the stream limits, this SHOULD be treated as
 a connection error of type H3_ID_ERROR. Generating an error is not
 mandatory because HTTP/3 implementations might have practical
 barriers to determining the active stream concurrency limit that is
 applied by the QUIC layer.

 The push-stream variant of PRIORITY_UPDATE (type=0xF0701) MUST
 reference a promised push stream. If a server receives a
 PRIORITY_UPDATE (type=0xF0701) with a push ID that is greater than
 the maximum push ID or that has not yet been promised, this MUST be
 treated as a connection error of type H3_ID_ERROR.

 Servers MUST NOT send PRIORITY_UPDATE frames of either type. If a
 client receives a PRIORITY_UPDATE frame, this MUST be treated as a
 connection error of type H3_FRAME_UNEXPECTED.

8. Merging Client- and Server-Driven Priority Parameters

 It is not always the case that the client has the best understanding
 of how the HTTP responses deserve to be prioritized. The server
 might have additional information that can be combined with the
 client’s indicated priority in order to improve the prioritization of
 the response. For example, use of an HTML document might depend
 heavily on one of the inline images; the existence of such
 dependencies is typically best known to the server. Or, a server
 that receives requests for a font [RFC8081] and images with the same
 urgency might give higher precedence to the font, so that a visual
 client can render textual information at an early moment.

 An origin can use the Priority response header field to indicate its
 view on how an HTTP response should be prioritized. An intermediary
 that forwards an HTTP response can use the priority parameters found
 in the Priority response header field, in combination with the client
 Priority request header field, as input to its prioritization
 process. No guidance is provided for merging priorities; this is
 left as an implementation decision.

 The absence of a priority parameter in an HTTP response indicates the
 server’s disinterest in changing the client-provided value. This is
 different from the request header field, in which omission of a
 priority parameter implies the use of its default value (see
 Section 4).

 As a non-normative example, when the client sends an HTTP request
 with the urgency parameter set to 5 and the incremental parameter set
 to true

 :method = GET
 :scheme = https
 :authority = example.net
 :path = /menu.png

 priority = u=5, i

 and the origin responds with

 :status = 200
 content-type = image/png
 priority = u=1

 the intermediary might alter its understanding of the urgency from 5
 to 1, because it prefers the server-provided value over the client’s.
 The incremental value continues to be true, i.e., the value specified
 by the client, as the server did not specify the incremental (i)
 parameter.

9. Client Scheduling

 A client MAY use priority values to make local processing or
 scheduling choices about the requests it initiates.

10. Server Scheduling

 It is generally beneficial for an HTTP server to send all responses
 as early as possible. However, when serving multiple requests on a
 single connection, there could be competition between the requests
 for resources such as connection bandwidth. This section describes
 considerations regarding how servers can schedule the order in which
 the competing responses will be sent when such competition exists.

 Server scheduling is a prioritization process based on many inputs,
 with priority signals being only one form of input. Factors such as
 implementation choices or deployment environment also play a role.
 Any given connection is likely to have many dynamic permutations.
 For these reasons, it is not possible to describe a universal
 scheduling algorithm. This document provides some basic, non-
 exhaustive recommendations for how servers might act on priority
 parameters. It does not describe in detail how servers might combine
 priority signals with other factors. Endpoints cannot depend on
 particular treatment based on priority signals. Expressing priority
 is only a suggestion.

 It is RECOMMENDED that, when possible, servers respect the urgency
 parameter (Section 4.1), sending higher-urgency responses before
 lower-urgency responses.

 The incremental parameter indicates how a client processes response
 bytes as they arrive. It is RECOMMENDED that, when possible, servers
 respect the incremental parameter (Section 4.2).

 Non-incremental responses of the same urgency SHOULD be served by
 prioritizing bandwidth allocation in ascending order of the stream
 ID, which corresponds to the order in which clients make requests.
 Doing so ensures that clients can use request ordering to influence
 response order.

 Incremental responses of the same urgency SHOULD be served by sharing
 bandwidth among them. The message content of incremental responses
 is used as parts, or chunks, are received. A client might benefit
 more from receiving a portion of all these resources rather than the
 entirety of a single resource. How large a portion of the resource
 is needed to be useful in improving performance varies. Some
 resource types place critical elements early; others can use
 information progressively. This scheme provides no explicit mandate
 about how a server should use size, type, or any other input to
 decide how to prioritize.

 There can be scenarios where a server will need to schedule multiple
 incremental and non-incremental responses at the same urgency level.
 Strictly abiding by the scheduling guidance based on urgency and
 request generation order might lead to suboptimal results at the
 client, as early non-incremental responses might prevent the serving
 of incremental responses issued later. The following are examples of

 such challenges:

 1. At the same urgency level, a non-incremental request for a large
 resource followed by an incremental request for a small resource.

 2. At the same urgency level, an incremental request of
 indeterminate length followed by a non-incremental large
 resource.

 It is RECOMMENDED that servers avoid such starvation where possible.
 The method for doing so is an implementation decision. For example,
 a server might preemptively send responses of a particular
 incremental type based on other information such as content size.

 Optimal scheduling of server push is difficult, especially when
 pushed resources contend with active concurrent requests. Servers
 can consider many factors when scheduling, such as the type or size
 of resource being pushed, the priority of the request that triggered
 the push, the count of active concurrent responses, the priority of
 other active concurrent responses, etc. There is no general guidance
 on the best way to apply these. A server that is too simple could
 easily push at too high a priority and block client requests, or push
 at too low a priority and delay the response, negating intended goals
 of server push.

 Priority signals are a factor for server push scheduling. The
 concept of parameter value defaults applies slightly differently
 because there is no explicit client-signaled initial priority. A
 server can apply priority signals provided in an origin response; see
 the merging guidance given in Section 8. In the absence of origin
 signals, applying default parameter values could be suboptimal. By
 whatever means a server decides to schedule a pushed response, it can
 signal the intended priority to the client by including the Priority
 field in a PUSH_PROMISE or HEADERS frame.

10.1. Intermediaries with Multiple Backend Connections

 An intermediary serving an HTTP connection might split requests over
 multiple backend connections. When it applies prioritization rules
 strictly, low-priority requests cannot make progress while requests
 with higher priorities are in flight. This blocking can propagate to
 backend connections, which the peer might interpret as a connection
 stall. Endpoints often implement protections against stalls, such as
 abruptly closing connections after a certain time period. To reduce
 the possibility of this occurring, intermediaries can avoid strictly
 following prioritization and instead allocate small amounts of
 bandwidth for all the requests that they are forwarding, so that
 every request can make some progress over time.

 Similarly, servers SHOULD allocate some amount of bandwidths to
 streams acting as tunnels.

11. Scheduling and the CONNECT Method

 When a stream carries a CONNECT request, the scheduling guidance in
 this document applies to the frames on the stream. A client that
 issues multiple CONNECT requests can set the incremental parameter to
 true. Servers that implement the recommendations for handling of the
 incremental parameter (Section 10) are likely to schedule these
 fairly, preventing one CONNECT stream from blocking others.

12. Retransmission Scheduling

 Transport protocols such as TCP and QUIC provide reliability by
 detecting packet losses and retransmitting lost information. In
 addition to the considerations in Section 10, scheduling of
 retransmission data could compete with new data. The remainder of
 this section discusses considerations when using QUIC.

 Section 13.3 of [QUIC] states the following: "Endpoints SHOULD
 prioritize retransmission of data over sending new data, unless

 priorities specified by the application indicate otherwise". When an
 HTTP/3 application uses the priority scheme defined in this document
 and the QUIC transport implementation supports application-indicated
 stream priority, a transport that considers the relative priority of
 streams when scheduling both new data and retransmission data might
 better match the expectations of the application. However, there are
 no requirements on how a transport chooses to schedule based on this
 information because the decision depends on several factors and
 trade-offs. It could prioritize new data for a higher-urgency stream
 over retransmission data for a lower-priority stream, or it could
 prioritize retransmission data over new data irrespective of
 urgencies.

 Section 6.2.4 of [QUIC-RECOVERY] also highlights considerations
 regarding application priorities when sending probe packets after
 Probe Timeout timer expiration. A QUIC implementation supporting
 application-indicated priorities might use the relative priority of
 streams when choosing probe data.

13. Fairness

 Typically, HTTP implementations depend on the underlying transport to
 maintain fairness between connections competing for bandwidth. When
 an intermediary receives HTTP requests on client connections, it
 forwards them to backend connections. Depending on how the
 intermediary coalesces or splits requests across different backend
 connections, different clients might experience dissimilar
 performance. This dissimilarity might expand if the intermediary
 also uses priority signals when forwarding requests. Sections 13.1
 and 13.2 discuss mitigations of this expansion of unfairness.

 Conversely, Section 13.3 discusses how servers might intentionally
 allocate unequal bandwidth to some connections, depending on the
 priority signals.

13.1. Coalescing Intermediaries

 When an intermediary coalesces HTTP requests coming from multiple
 clients into one HTTP/2 or HTTP/3 connection going to the backend
 server, requests that originate from one client might carry signals
 indicating higher priority than those coming from others.

 It is sometimes beneficial for the server running behind an
 intermediary to obey Priority header field values. As an example, a
 resource-constrained server might defer the transmission of software
 update files that have the background urgency level (7). However, in
 the worst case, the asymmetry between the priority declared by
 multiple clients might cause all responses going to one user agent to
 be delayed until all responses going to another user agent have been
 sent.

 In order to mitigate this fairness problem, a server could use
 knowledge about the intermediary as another input in its
 prioritization decisions. For instance, if a server knows the
 intermediary is coalescing requests, then it could avoid serving the
 responses in their entirety and instead distribute bandwidth (for
 example, in a round-robin manner). This can work if the constrained
 resource is network capacity between the intermediary and the user
 agent, as the intermediary buffers responses and forwards the chunks
 based on the prioritization scheme it implements.

 A server can determine if a request came from an intermediary through
 configuration or can check to see if the request contains one of the
 following header fields:

 * Forwarded [FORWARDED], X-Forwarded-For

 * Via (see Section 7.6.3 of [HTTP])

13.2. HTTP/1.x Back Ends

 It is common for Content Delivery Network (CDN) infrastructure to
 support different HTTP versions on the front end and back end. For
 instance, the client-facing edge might support HTTP/2 and HTTP/3
 while communication to backend servers is done using HTTP/1.1.
 Unlike connection coalescing, the CDN will "demux" requests into
 discrete connections to the back end. Response multiplexing in a
 single connection is not supported by HTTP/1.1 (or older), so there
 is not a fairness problem. However, backend servers MAY still use
 client headers for request scheduling. Backend servers SHOULD only
 schedule based on client priority information where that information
 can be scoped to individual end clients. Authentication and other
 session information might provide this linkability.

13.3. Intentional Introduction of Unfairness

 It is sometimes beneficial to deprioritize the transmission of one
 connection over others, knowing that doing so introduces a certain
 amount of unfairness between the connections and therefore between
 the requests served on those connections.

 For example, a server might use a scavenging congestion controller on
 connections that only convey background priority responses such as
 software update images. Doing so improves responsiveness of other
 connections at the cost of delaying the delivery of updates.

14. Why Use an End-to-End Header Field?

 In contrast to the prioritization scheme of HTTP/2, which uses a hop-
 by-hop frame, the Priority header field is defined as "end-to-end".

 The way that a client processes a response is a property associated
 with the client generating that request, not that of an intermediary.
 Therefore, it is an end-to-end property. How these end-to-end
 properties carried by the Priority header field affect the
 prioritization between the responses that share a connection is a
 hop-by-hop issue.

 Having the Priority header field defined as end-to-end is important
 for caching intermediaries. Such intermediaries can cache the value
 of the Priority header field along with the response and utilize the
 value of the cached header field when serving the cached response,
 only because the header field is defined as end-to-end rather than
 hop-by-hop.

15. Security Considerations

 Section 7 describes considerations for server buffering of
 PRIORITY_UPDATE frames.

 Section 10 presents examples where servers that prioritize responses
 in a certain way might be starved of the ability to transmit
 responses.

 The security considerations from [STRUCTURED-FIELDS] apply to the
 processing of priority parameters defined in Section 4.

16. IANA Considerations

 This specification registers the following entry in the "Hypertext
 Transfer Protocol (HTTP) Field Name Registry" defined in [HTTP/2]:

 Field Name: Priority
 Status: permanent
 Reference: This document

 This specification registers the following entry in the "HTTP/2
 Settings" registry defined in [HTTP/2]:

 Code: 0x9
 Name: SETTINGS_NO_RFC7540_PRIORITIES
 Initial Value: 0

 Reference: This document

 This specification registers the following entry in the "HTTP/2 Frame
 Type" registry defined in [HTTP/2]:

 Code: 0x10
 Frame Type: PRIORITY_UPDATE
 Reference: This document

 This specification registers the following entry in the "HTTP/3 Frame
 Types" registry established by [HTTP/3]:

 Value: 0xF0700-0xF0701
 Frame Type: PRIORITY_UPDATE
 Status: permanent
 Reference: This document
 Change Controller: IETF
 Contact: ietf-http-wg@w3.org

 IANA has created the "Hypertext Transfer Protocol (HTTP) Priority"
 registry at <https://www.iana.org/assignments/http-priority> and has
 populated it with the entries in Table 1; see Section 4.3.1 for its
 associated procedures.

 +======+==================================+=============+
 | Name | Description | Reference |
 +======+==================================+=============+
 | u | The urgency of an HTTP response. | Section 4.1 |
 +------+----------------------------------+-------------+
 | i | Whether an HTTP response can be | Section 4.2 |
 | | processed incrementally. | |
 +------+----------------------------------+-------------+

 Table 1: Initial Priority Parameters

17. References

17.1. Normative References

 [HTTP] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP Semantics", STD 97, RFC 9110,
 DOI 10.17487/RFC9110, June 2022,
 <https://www.rfc-editor.org/info/rfc9110>.

 [HTTP/2] Thomson, M., Ed. and C. Benfield, Ed., "HTTP/2", RFC 9113,
 DOI 10.17487/RFC9113, June 2022,
 <https://www.rfc-editor.org/info/rfc9113>.

 [HTTP/3] Bishop, M., Ed., "HTTP/3", RFC 9114, DOI 10.17487/RFC9114,
 June 2022, <https://www.rfc-editor.org/info/rfc9114>.

 [QUIC] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", RFC 9000,
 DOI 10.17487/RFC9000, May 2021,
 <https://www.rfc-editor.org/info/rfc9000>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [STRUCTURED-FIELDS]

 Nottingham, M. and P-H. Kamp, "Structured Field Values for
 HTTP", RFC 8941, DOI 10.17487/RFC8941, February 2021,
 <https://www.rfc-editor.org/info/rfc8941>.

17.2. Informative References

 [CACHING] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP Caching", STD 98, RFC 9111,
 DOI 10.17487/RFC9111, June 2022,
 <https://www.rfc-editor.org/info/rfc9111>.

 [FORWARDED]
 Petersson, A. and M. Nilsson, "Forwarded HTTP Extension",
 RFC 7239, DOI 10.17487/RFC7239, June 2014,
 <https://www.rfc-editor.org/info/rfc7239>.

 [MARX] Marx, R., De Decker, T., Quax, P., and W. Lamotte, "Of the
 Utmost Importance: Resource Prioritization in HTTP/3 over
 QUIC", SCITEPRESS Proceedings of the 15th International
 Conference on Web Information Systems and Technologies
 (pages 130-143), DOI 10.5220/0008191701300143, September
 2019, <https://www.doi.org/10.5220/0008191701300143>.

 [PRIORITY-SETTING]
 Lassey, B. and L. Pardue, "Declaring Support for HTTP/2
 Priorities", Work in Progress, Internet-Draft, draft-
 lassey-priority-setting-00, 25 July 2019,
 <https://datatracker.ietf.org/doc/html/draft-lassey-
 priority-setting-00>.

 [QUIC-RECOVERY]
 Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection
 and Congestion Control", RFC 9002, DOI 10.17487/RFC9002,
 May 2021, <https://www.rfc-editor.org/info/rfc9002>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC8081] Lilley, C., "The "font" Top-Level Media Type", RFC 8081,
 DOI 10.17487/RFC8081, February 2017,
 <https://www.rfc-editor.org/info/rfc8081>.

Acknowledgements

 Roy Fielding presented the idea of using a header field for
 representing priorities in
 <https://www.ietf.org/proceedings/83/slides/slides-83-httpbis-5.pdf>.
 In <https://github.com/pmeenan/http3-prioritization-proposal>,
 Patrick Meenan advocated for representing the priorities using a
 tuple of urgency and concurrency. The ability to disable HTTP/2
 prioritization is inspired by [PRIORITY-SETTING], authored by Brad
 Lassey and Lucas Pardue, with modifications based on feedback that
 was not incorporated into an update to that document.

 The motivation for defining an alternative to HTTP/2 priorities is
 drawn from discussion within the broad HTTP community. Special
 thanks to Roberto Peon, Martin Thomson, and Netflix for text that was
 incorporated explicitly in this document.

 In addition to the people above, this document owes a lot to the
 extensive discussion in the HTTP priority design team, consisting of
 Alan Frindell, Andrew Galloni, Craig Taylor, Ian Swett, Matthew Cox,
 Mike Bishop, Roberto Peon, Robin Marx, Roy Fielding, and the authors
 of this document.

 Yang Chi contributed the section on retransmission scheduling.

Authors’ Addresses

 Kazuho Oku
 Fastly
 Email: kazuhooku@gmail.com

 Additional contact information:

 å¥¥ ä¸\200ç©\202
 Fastly

 Lucas Pardue
 Cloudflare
 Email: lucaspardue.24.7@gmail.com

