
ï»¿

Internet Engineering Task Force (IETF) B. Carpenter
Request for Comments: 9222 Univ. of Auckland
Category: Informational L. Ciavaglia
ISSN: 2070-1721 Rakuten Mobile
 S. Jiang
 Huawei Technologies Co., Ltd
 P. Peloso
 Nokia
 March 2022

 Guidelines for Autonomic Service Agents

Abstract

 This document proposes guidelines for the design of Autonomic Service
 Agents for autonomic networks. Autonomic Service Agents, together
 with the Autonomic Network Infrastructure, the Autonomic Control
 Plane, and the GeneRic Autonomic Signaling Protocol, constitute base
 elements of an autonomic networking ecosystem.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9222.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Revised BSD License text as described in Section 4.e of the
 Trust Legal Provisions and are provided without warranty as described
 in the Revised BSD License.

Table of Contents

 1. Introduction
 2. Terminology
 3. Logical Structure of an Autonomic Service Agent
 4. Interaction with the Autonomic Networking Infrastructure
 4.1. Interaction with the Security Mechanisms
 4.2. Interaction with the Autonomic Control Plane
 4.3. Interaction with GRASP and its API
 4.4. Interaction with Policy Mechanisms
 5. Interaction with Non-autonomic Components and Systems
 6. Design of GRASP Objectives
 7. Life Cycle
 7.1. Installation Phase
 7.1.1. Installation Phase Inputs and Outputs

 7.2. Instantiation Phase
 7.2.1. Operator’s Goal
 7.2.2. Instantiation Phase Inputs and Outputs
 7.2.3. Instantiation Phase Requirements
 7.3. Operation Phase
 7.4. Removal Phase
 8. Coordination and Data Models
 8.1. Coordination between Autonomic Functions
 8.2. Coordination with Traditional Management Functions
 8.3. Data Models
 9. Robustness
 10. Security Considerations
 11. IANA Considerations
 12. References
 12.1. Normative References
 12.2. Informative References
 Appendix A. Example Logic Flows
 Acknowledgements
 Authors’ Addresses

1. Introduction

 This document proposes guidelines for the design of Autonomic Service
 Agents (ASAs) in the context of an Autonomic Network (AN) based on
 the Autonomic Network Infrastructure (ANI) outlined in the autonomic
 networking reference model [RFC8993]. This infrastructure makes use
 of the Autonomic Control Plane (ACP) [RFC8994] and the GeneRic
 Autonomic Signaling Protocol (GRASP) [RFC8990]. A general
 introduction to this environment may be found at [IPJ], which also
 includes explanatory diagrams, and a summary of terminology is in
 Section 2.

 This document is a contribution to the description of an autonomic
 networking ecosystem, recognizing that a deployable autonomic network
 needs more than just ACP and GRASP implementations. Such an
 autonomic network must achieve management tasks that a Network
 Operations Center (NOC) cannot readily achieve manually, such as
 continuous resource optimization or automated fault detection and
 repair. These tasks, and other management automation goals, are
 described at length in [RFC7575]. The net result should be
 significant operational improvement. To achieve this, the autonomic
 networking ecosystem must include at least a library of ASAs and
 corresponding GRASP technical objective definitions. A GRASP
 objective [RFC8990] is a data structure whose main contents are a
 name and a value. The value consists of a single configurable
 parameter or a set of parameters of some kind.

 There must also be tools to deploy and oversee ASAs, and integration
 with existing operational mechanisms [RFC8368]. However, this
 document focuses on the design of ASAs, with some reference to
 implementation and operational aspects.

 There is considerable literature about autonomic agents with a
 variety of proposals about how they should be characterized. Some
 examples are [DEMOLA06], [HUEBSCHER08], [MOVAHEDI12], and [GANA13].
 However, for the present document, the basic definitions and goals
 for autonomic networking given in [RFC7575] apply. According to RFC
 7575, an Autonomic Service Agent is "An agent implemented on an
 autonomic node that implements an autonomic function, either in part
 (in the case of a distributed function) or whole."

 ASAs must be distinguished from other forms of software components.
 They are components of network or service management; they do not in
 themselves provide services to end users. They do, however, provide
 management services to network operators and administrators. For
 example, the services envisaged for network function virtualization
 (NFV) [NFV] or for service function chaining (SFC) [RFC7665] might be
 managed by an ASA rather than by traditional configuration tools.

 Another example is that an existing script running within a router to
 locally monitor or configure functions or services could be upgraded

 to an ASA that could communicate with peer scripts on neighboring or
 remote routers. A high-level API will allow such upgraded scripts to
 take full advantage of the secure ACP and the discovery, negotiation,
 and synchronization features of GRASP. Familiar tasks such as
 configuring an Interior Gateway Protocol (IGP) on neighboring routers
 or even exchanging IGP security keys could be performed securely in
 this way. This document mainly addresses issues affecting quite
 complex ASAs, but initially, the most useful ASAs may in fact be
 rather simple evolutions of existing scripts.

 The reference model [RFC8993] for autonomic networks explains further
 the functionality of ASAs by adding the following:

 | [An ASA is] a process that makes use of the features provided by
 | the ANI to achieve its own goals, usually including interaction
 | with other ASAs via GRASP [RFC8990] or otherwise. Of course, it
 | also interacts with the specific targets of its function, using
 | any suitable mechanism. Unless its function is very simple, the
 | ASA will need to handle overlapping asynchronous operations. It
 | may therefore be a quite complex piece of software in its own
 | right, forming part of the application layer above the ANI.

 As mentioned, there will certainly be simple ASAs that manage a
 single objective in a straightforward way and do not need
 asynchronous operations. In nodes where computing power and memory
 space are limited, ASAs should run at a much lower frequency than the
 primary workload, so CPU load should not be a big issue, but memory
 footprint in a constrained node is certainly a concern. ASAs
 installed in constrained devices will have limited functionality. In
 such cases, many aspects of the current document do not apply.
 However, in the general case, an ASA may be a relatively complex
 software component that will in many cases control and monitor
 simpler entities in the same or remote host(s). For example, a
 device controller that manages tens or hundreds of simple devices
 might contain a single ASA.

 The remainder of this document offers guidance on the design of
 complex ASAs. Some of the material may be familiar to those
 experienced in distributed fault-tolerant and real-time control
 systems. Robustness and security are of particular importance in
 autonomic networks and are discussed in Sections 9 and 10.

2. Terminology

 This section summarizes various acronyms and terminology used in the
 document. Where no other reference is given, please consult
 [RFC8993] or [RFC7575].

 Autonomic: self-managing (self-configuring, self-protecting, self-
 healing, self-optimizing), but allowing high-level guidance by a
 central entity such as a NOC

 Autonomic Function: a function that adapts on its own to a changing
 environment

 Autonomic Node: a node that employs autonomic functions

 ACP: Autonomic Control Plane [RFC8994]

 AN: Autonomic Network; a network of autonomic nodes, which interact
 directly with each other

 ANI: Autonomic Network Infrastructure

 ASA: Autonomic Service Agent; an agent installed on an autonomic
 node that implements an autonomic function, either partially (in
 the case of a distributed function) or completely

 BRSKI: Bootstrapping Remote Secure Key Infrastructure [RFC8995]

 CBOR: Concise Binary Object Representation[RFC8949]

 GRASP: GeneRric Autonomic Signaling Protocol [RFC8990]

 GRASP API: GRASP Application Programming Interface [RFC8991]

 NOC: Network Operations Center [RFC8368]

 Objective: A GRASP technical objective is a data structure whose
 main contents are a name and a value. The value consists of a
 single configurable parameter or a set of parameters of some kind
 [RFC8990].

3. Logical Structure of an Autonomic Service Agent

 As mentioned above, all but the simplest ASAs will need to support
 asynchronous operations. Different programming environments support
 asynchronicity in different ways. In this document, we use an
 explicit multi-threading model to describe operations. This is
 illustrative, and alternatives to multi-threading are discussed in
 detail in connection with the GRASP API (see Section 4.3).

 A typical ASA will have a main thread that performs various initial
 housekeeping actions such as:

 * obtain authorization credentials, if needed

 * register the ASA with GRASP

 * acquire relevant policy parameters

 * declare data structures for relevant GRASP objectives

 * register with GRASP those objectives that it will actively manage

 * launch a self-monitoring thread

 * enter its main loop

 The logic of the main loop will depend on the details of the
 autonomic function concerned. Whenever asynchronous operations are
 required, extra threads may be launched. Examples of such threads
 include:

 * repeatedly flood an objective to the AN so that any ASA can
 receive the objective’s latest value

 * accept incoming synchronization requests for an objective managed
 by this ASA

 * accept incoming negotiation requests for an objective managed by
 this ASA, and then conduct the resulting negotiation with the
 counterpart ASA

 * manage subsidiary non-autonomic devices directly

 These threads should all either exit after their job is done or enter
 a wait state for new work to avoid wasting system resources.

 According to the degree of parallelism needed by the application,
 some of these threads might be launched in multiple instances. In
 particular, if negotiation sessions with other ASAs are expected to
 be long or to involve wait states, the ASA designer might allow for
 multiple simultaneous negotiating threads, with appropriate use of
 queues and synchronization primitives to maintain consistency.

 The main loop itself could act as the initiator of synchronization
 requests or negotiation requests when the ASA needs data or resources
 from other ASAs. In particular, the main loop should watch for
 changes in policy parameters that affect its operation and, if
 appropriate, occasionally refresh authorization credentials. It
 should also do whatever is required to avoid unnecessary resource

 consumption, for example, by limiting its frequency of execution.

 The self-monitoring thread is of considerable importance. Failure of
 autonomic service agents is highly undesirable. To a large extent,
 this depends on careful coding and testing, with no unhandled error
 returns or exceptions, but if there is nevertheless some sort of
 failure, the self-monitoring thread should detect it, fix it if
 possible, and, in the worst case, restart the entire ASA.

 Appendix A presents some example logic flows in informal pseudocode.

4. Interaction with the Autonomic Networking Infrastructure

4.1. Interaction with the Security Mechanisms

 An ASA by definition runs in an autonomic node. Before any normal
 ASAs are started, such nodes must be bootstrapped into the autonomic
 network’s secure key infrastructure, typically in accordance with
 [RFC8995]. This key infrastructure will be used to secure the ACP
 (next section) and may be used by ASAs to set up additional secure
 interactions with their peers, if needed.

 Note that the secure bootstrap process itself incorporates simple
 special-purpose ASAs that use a restricted mode of GRASP (Section 4
 of [RFC8995]).

4.2. Interaction with the Autonomic Control Plane

 In a normal autonomic network, ASAs will run as clients of the ACP,
 which will provide a fully secured network environment for all
 communication with other ASAs, in most cases mediated by GRASP (next
 section).

 Note that the ACP formation process itself incorporates simple
 special-purpose ASAs that use a restricted mode of GRASP (Section 6.4
 of [RFC8994]).

4.3. Interaction with GRASP and its API

 In a node where a significant number of ASAs are installed, GRASP
 [RFC8990] is likely to run as a separate process with its API
 [RFC8991] available in user space. Thus, ASAs may operate without
 special privilege, unless they need it for other reasons. The ASA’s
 view of GRASP is built around GRASP objectives (Section 6), defined
 as data structures containing administrative information such as the
 objective’s unique name, and its current value. The format and size
 of the value is not restricted by the protocol, except that it must
 be possible to serialize it for transmission in Concise Binary Object
 Representation (CBOR) [RFC8949], subject only to GRASP’s maximum
 message size as discussed in Section 6.

 As discussed in Section 3, GRASP is an asynchronous protocol, and
 this document uses a multi-threading model to describe operations.
 In many programming environments, an "event loop" model is used
 instead, in which case each thread would be implemented as an event
 handler called in turn by the main loop. For this case, the GRASP
 API must provide non-blocking calls and possibly support callbacks.
 This topic is discussed in more detail in [RFC8991], and other
 asynchronicity models are also possible. Whenever necessary, the
 GRASP session identifier will be used to distinguish simultaneous
 operations.

 The GRASP API should offer the following features:

 * Registration functions, so that an ASA can register itself and the
 objectives that it manages.

 * A discovery function, by which an ASA can discover other ASAs
 supporting a given objective.

 * A negotiation request function, by which an ASA can start

 negotiation of an objective with a counterpart ASA. With this,
 there is a corresponding listening function for an ASA that wishes
 to respond to negotiation requests and a set of functions to
 support negotiating steps. Once a negotiation starts, it is a
 symmetric process with both sides sending successive objective
 values to each other until agreement is reached (or the
 negotiation fails).

 * A synchronization function, by which an ASA can request the
 current value of an objective from a counterpart ASA. With this,
 there is a corresponding listening function for an ASA that wishes
 to respond to synchronization requests. Unlike negotiation,
 synchronization is an asymmetric process in which the listener
 sends a single objective value to the requester.

 * A flood function, by which an ASA can cause the current value of
 an objective to be flooded throughout the AN so that any ASA can
 receive it.

 For further details and some additional housekeeping functions, see
 [RFC8991].

 The GRASP API is intended to support the various interactions
 expected between most ASAs, such as the interactions outlined in
 Section 3. However, if ASAs require additional communication between
 themselves, they can do so directly over the ACP to benefit from its
 security. One option is to use GRASP discovery and synchronization
 as a rendezvous mechanism between two ASAs, passing communication
 parameters such as a TCP port number via GRASP. The use of TLS over
 the ACP for such communications is advisable, as described in
 Section 6.9.2 of [RFC8994].

4.4. Interaction with Policy Mechanisms

 At the time of writing, the policy mechanisms for the ANI are
 undefined. In particular, the use of declarative policies (aka
 Intents) for the definition and management of an ASA’s behaviors
 remains a research topic [IBN-CONCEPTS].

 In the cases where ASAs are defined as closed control loops, the
 specifications defined in [ZSM009-1] regarding imperative and
 declarative goal statements may be applicable.

 In the ANI, policy dissemination is expected to operate by an
 information distribution mechanism (e.g., via GRASP [RFC8990]) that
 can reach all autonomic nodes and therefore every ASA. However, each
 ASA must be capable of operating "out of the box" in the absence of
 locally defined policy, so every ASA implementation must include
 carefully chosen default values and settings for all policy
 parameters.

5. Interaction with Non-autonomic Components and Systems

 To have any external effects, an ASA must also interact with non-
 autonomic components of the node where it is installed. For example,
 an ASA whose purpose is to manage a resource must interact with that
 resource. An ASA managing an entity that is also managed by local
 software must interact with that software. For example, if such
 management is performed by NETCONF [RFC6241], the ASA must interact
 with the NETCONF server as an independent NETCONF client in the same
 node to avoid any inconsistency between configuration changes
 delivered via NETCONF and configuration changes made by the ASA.

 In an environment where systems are virtualized and specialized using
 techniques such as network function virtualization or network
 slicing, there will be a design choice whether ASAs are deployed once
 per physical node or once per virtual context. A related issue is
 whether the ANI as a whole is deployed once on a physical network or
 whether several virtual ANIs are deployed. This aspect needs to be
 considered by the ASA designer.

6. Design of GRASP Objectives

 The design of an ASA will often require the design of a new GRASP
 objective. The general rules for the format of GRASP objectives,
 their names, and IANA registration are given in [RFC8990].
 Additionally, that document discusses various general considerations
 for the design of objectives, which are not repeated here. However,
 note that GRASP, like HTTP, does not provide transactional integrity.
 In particular, steps in a GRASP negotiation are not idempotent. The
 design of a GRASP objective and the logic flow of the ASA should take
 this into account. One approach, which should be used when possible,
 is to design objectives with idempotent semantics. If this is not
 possible, typically if an ASA is allocating part of a shared resource
 to other ASAs, it needs to ensure that the same part of the resource
 is not allocated twice. The easiest way is to run only one
 negotiation at a time. If an ASA is capable of overlapping several
 negotiations, it must avoid interference between these negotiations.

 Negotiations will always end, normally because one end or the other
 declares success or failure. If this does not happen, either a
 timeout or exhaustion of the loop count will occur. The definition
 of a GRASP objective should describe a specific negotiation policy if
 it is not self-evident.

 GRASP allows a "dry run" mode of negotiation, where a negotiation
 session follows its normal course but is not committed at either end
 until a subsequent live negotiation session. If dry run mode is
 defined for the objective, its specification, and every
 implementation, must consider what state needs to be saved following
 a dry run negotiation, such that a subsequent live negotiation can be
 expected to succeed. It must be clear how long this state is kept
 and what happens if the live negotiation occurs after this state is
 deleted. An ASA that requests a dry run negotiation must take
 account of the possibility that a successful dry run is followed by a
 failed live negotiation. Because of these complexities, the dry run
 mechanism should only be supported by objectives and ASAs where there
 is a significant benefit from it.

 The actual value field of an objective is limited by the GRASP
 protocol definition to any data structure that can be expressed in
 Concise Binary Object Representation (CBOR) [RFC8949]. For some
 objectives, a single data item will suffice, for example, an integer,
 a floating point number, a UTF-8 string, or an arbitrary byte string.
 For more complex cases, a simple tuple structure such as [item1,
 item2, item3] could be used. Since CBOR is closely linked to JSON,
 it is also rather easy to define an objective whose value is a JSON
 structure. The formats acceptable by the GRASP API will limit the
 options in practice. A generic solution is for the API to accept and
 deliver the value field in raw CBOR, with the ASA itself encoding and
 decoding it via a CBOR library (Section 2.3.2.4 of [RFC8991]).

 The maximum size of the value field of an objective is limited by the
 GRASP maximum message size. If the default maximum size specified as
 GRASP_DEF_MAX_SIZE by [RFC8990] is not enough, the specification of
 the objective must indicate the required maximum message size for
 both unicast and multicast messages.

 A mapping from YANG to CBOR is defined by [CBOR-YANG]. Subject to
 the size limit defined for GRASP messages, nothing prevents
 objectives transporting YANG in this way.

 The flexibility of CBOR implies that the value field of many
 objectives can be extended in service, to add additional information
 or alternative content, especially if JSON-like structures are used.
 This has consequences for the robustness of ASAs, as discussed in
 Section 9.

7. Life Cycle

 The ASA life cycle is discussed in [AUTONOMIC-FUNCTION], from which
 the following text was derived. It does not cover all details, and

 some of the terms used would require precise definitions in a given
 implementation.

 In simple cases, autonomic functions could be permanent, in the sense
 that ASAs are shipped as part of a product and persist throughout the
 product’s life. However, in complex cases, a more likely situation
 is that ASAs need to be installed or updated dynamically because of
 new requirements or bugs. This section describes one approach to the
 resulting life cycle of individual ASAs. It does not consider wider
 issues such as updates of shared libraries.

 Because continuity of service is fundamental to autonomic networking,
 the process of seamlessly replacing a running instance of an ASA with
 a new version needs to be part of the ASA’s design. The implication
 of service continuity on the design of ASAs can be illustrated along
 the three main phases of the ASA life cycle, namely installation,
 instantiation, and operation.

 +--------------+
 Undeployed ------>| |------> Undeployed
 | Installed |
 +-->| |---+
 Mandate | +--------------+ | Receives a
 is revoked | +--------------+ | Mandate
 +---| |<--+
 | Instantiated |
 +-->| |---+
 set | +--------------+ | set
 down | +--------------+ | up
 +---| |<--+
 | Operational |
 | |
 +--------------+

 Figure 1: Life Cycle of an Autonomic Service Agent

7.1. Installation Phase

 We define "installation" to mean that a piece of software is loaded
 into a device, along with any necessary libraries, but is not yet
 activated.

 Before being able to instantiate and run ASAs, the operator will
 first provision the infrastructure with the sets of ASA software
 corresponding to its needs and objectives. Such software must be
 checked for integrity and authenticity before installation. The
 provisioning of the infrastructure is realized in the installation
 phase and consists of installing (or checking the availability of)
 the pieces of software of the different ASAs in a set of Installation
 Hosts within the autonomic network.

 There are three properties applicable to the installation of ASAs:

 * The dynamic installation property allows installing an ASA on
 demand, on any hosts compatible with the ASA.

 * The decoupling property allows an ASA on one machine to control
 resources in another machine (known as "decoupled mode").

 * The multiplicity property allows controlling multiple sets of
 resources from a single ASA.

 These three properties are very important in the context of the
 installation phase as their variations condition how the ASA could be
 installed on the infrastructure.

7.1.1. Installation Phase Inputs and Outputs

 Inputs are:

 * [ASA_type]: specifies which ASA to install.

 * [Installation_target_infrastructure]: specifies the candidate
 installation Hosts.

 * [ASA_placement_function]: specifies how the installation phase
 will meet the operator’s needs and objectives for the provision of
 the infrastructure. This function is only useful in the decoupled
 mode. It can be as simple as an explicit list of hosts on which
 the ASAs are to be installed, or it could consist of operator-
 defined criteria and constraints.

 The main output of the installation phase is a [List_of_ASAs]
 installed on [List_of_hosts]. This output is also useful for the
 coordination function where it acts as a static interaction map (see
 Section 8.1).

 The condition to validate in order to pass to next phase is to ensure
 that [List_of_ASAs] are correctly installed on [List_of_hosts]. A
 minimum set of primitives to support the installation of ASAs could
 be the following: install (List_of_ASAs,
 Installation_target_infrastructure, ASA_placement_function) and
 uninstall (List_of_ASAs).

7.2. Instantiation Phase

 We define "instantiation" as the operation of creating a single ASA
 instance from the corresponding piece of installed software.

 Once the ASAs are installed on the appropriate hosts in the network,
 these ASAs may start to operate. From the operator viewpoint, an
 operating ASA means the ASA manages the network resources as per the
 objectives given. At the ASA local level, operating means executing
 their control loop algorithm.

 There are two aspects to take into consideration. First, having a
 piece of code installed and available to run on a host is not the
 same as having an agent based on this piece of code running inside
 the host. Second, in a coupled case, determining which resources are
 controlled by an ASA is straightforward (the ASA runs on the same
 autonomic node as the resources it is controlling). In a decoupled
 mode, determining this is a bit more complex: a starting agent will
 have to either discover the set of resources it ought to control, or
 such information has to be communicated to the ASA.

 The instantiation phase of an ASA covers both these aspects: starting
 the agent code (when this does not start automatically) and
 determining which resources have to be controlled (when this is not
 straightforward).

7.2.1. Operator’s Goal

 Through this phase, the operator wants to control its autonomic
 network regarding at least two aspects:

 1. determine the scope of autonomic functions by instructing which
 network resources have to be managed by which autonomic function
 (and more precisely by which release of the ASA software code,
 e.g., version number or provider).

 2. determine how the autonomic functions are organized by
 instantiating a set of ASAs across one or more autonomic nodes
 and instructing them accordingly about the other ASAs in the set
 as necessary.

 In this phase, the operator may also want to set goals for autonomic
 functions, e.g., by configuring GRASP objectives.

 The operator’s goal can be summarized in an instruction to the
 autonomic ecosystem matching the following format, explained in
 detail in the next sub-section:

 [Instances_of_ASA_type] ready to control
 [Instantiation_target_infrastructure] with
 [Instantiation_target_parameters]

7.2.2. Instantiation Phase Inputs and Outputs

 Inputs are:

 * [Instances_of_ASA_type]: specifies which ASAs to instantiate

 * [Instantiation_target_infrastructure]: specifies which resources
 are to be managed by the autonomic function; this can be the whole
 network or a subset of it like a domain, a physical segment, or
 even a specific list of resources.

 * [Instantiation_target_parameters]: specifies which GRASP
 objectives are to be sent to ASAs (e.g., an optimization target)

 Outputs are:

 * [Set_of_ASA_resources_relations]: describes which resources are
 managed by which ASA instances; this is not a formal message but a
 resulting configuration log for a set of ASAs.

7.2.3. Instantiation Phase Requirements

 The instructions described in Section 7.2 could be either of the
 following:

 * Sent to a targeted ASA. In this case, the receiving Agent will
 have to manage the specified list of
 [Instantiation_target_infrastructure], with the
 [Instantiation_target_parameters].

 * Broadcast to all ASAs. In this case, the ASAs would determine
 from the list which ASAs would handle which
 [Instantiation_target_infrastructure], with the
 [Instantiation_target_parameters].

 These instructions may be grouped as a specific data structure
 referred to as an ASA Instance Mandate. The specification of such an
 ASA Instance Mandate is beyond the scope of this document.

 The conclusion of this instantiation phase is a set of ASA instances
 ready to operate. These ASA instances are characterized by the
 resources they manage, the metrics being monitored, and the actions
 that can be executed (like modifying certain parameter values). The
 description of the ASA instance may be defined in an ASA Instance
 Manifest data structure. The specification of such an ASA Instance
 Manifest is beyond the scope of this document.

 The ASA Instance Manifest does not only serve informational purposes
 such as acknowledgement of successful instantiation to the operator
 but is also necessary for further autonomic operations with:

 * coordinated entities (see Section 8.1)

 * collaborative entities with purposes such as to establish
 knowledge exchange (some ASAs may produce knowledge or monitor
 metrics that would be useful for other ASAs)

7.3. Operation Phase

 During the operation phase, the operator can:

 * activate/deactivate ASAs: enable/disable their autonomic loops

 * modify ASA targets: set different technical objectives

 * modify ASAs managed resources: update the Instance Mandate to
 specify a different set of resources to manage (only applicable to

 decoupled ASAs)

 During the operation phase, running ASAs can interact with other
 ASAs:

 * in order to exchange knowledge (e.g., an ASA providing traffic
 predictions to a load balancing ASA)

 * in order to collaboratively reach an objective (e.g., ASAs
 pertaining to the same autonomic function will collaborate, e.g.,
 in the case of a load balancing function, by modifying link
 metrics according to neighboring resource loads)

 During the operation phase, running ASAs are expected to apply
 coordination schemes as per Section 8.1.

7.4. Removal Phase

 When an ASA is removed from service and uninstalled, the above steps
 are reversed. It is important that its data, especially any security
 key material, is purged.

8. Coordination and Data Models

8.1. Coordination between Autonomic Functions

 Some autonomic functions will be completely independent of each
 other. However, others are at risk of interfering with each other;
 for example, two different optimization functions might both attempt
 to modify the same underlying parameter in different ways. In a
 complete system, a method is needed for identifying ASAs that might
 interfere with each other and coordinating their actions when
 necessary.

8.2. Coordination with Traditional Management Functions

 Some ASAs will have functions that overlap with existing
 configuration tools and network management mechanisms such as
 command-line interfaces, DHCP, DHCPv6, SNMP, NETCONF, and RESTCONF.
 This is, of course, an existing problem whenever multiple
 configuration tools are in use by the NOC. Each ASA designer will
 need to consider this issue and how to avoid clashes and
 inconsistencies in various deployment scenarios. Some specific
 considerations for interaction with OAM tools are given in [RFC8368].
 As another example, [RFC8992] describes how autonomic management of
 IPv6 prefixes can interact with prefix delegation via DHCPv6. The
 description of a GRASP objective and of an ASA using it should
 include a discussion of any such interactions.

8.3. Data Models

 Management functions often include a shared data model, quite likely
 to be expressed in a formal notation such as YANG. This aspect
 should not be an afterthought in the design of an ASA. To the
 contrary, the design of the ASA and of its GRASP objectives should
 match the data model; as noted in Section 6, YANG serialized as CBOR
 may be used directly as the value of a GRASP objective.

9. Robustness

 It is of great importance that all components of an autonomic system
 are highly robust. Although ASA designers should aim for their
 component to never fail, it is more important to design the ASA to
 assume that failures will happen and to gracefully recover from those
 failures when they occur. Hence, this section lists various aspects
 of robustness that ASA designers should consider:

 1. If despite all precautions, an ASA does encounter a fatal error,
 it should in any case restart automatically and try again. To
 mitigate a loop in case of persistent failure, a suitable pause
 should be inserted before such a restart. The length of the

 pause depends on the use case; randomization and exponential
 backoff should be considered.

 2. If a newly received or calculated value for a parameter falls
 out of bounds, the corresponding parameter should be either left
 unchanged or restored to a value known to be safe in all
 configurations.

 3. If a GRASP synchronization or negotiation session fails for any
 reason, it may be repeated after a suitable pause. The length
 of the pause depends on the use case; randomization and
 exponential backoff should be considered.

 4. If a session fails repeatedly, the ASA should consider that its
 peer has failed, and it should cause GRASP to flush its
 discovery cache and repeat peer discovery.

 5. In any case, it may be prudent to repeat discovery periodically,
 depending on the use case.

 6. Any received GRASP message should be checked. If it is wrongly
 formatted, it should be ignored. Within a unicast session, an
 Invalid message (M_INVALID) may be sent. This function may be
 provided by the GRASP implementation itself.

 7. Any received GRASP objective should be checked. Basic
 formatting errors like invalid CBOR will likely be detected by
 GRASP itself, but the ASA is responsible for checking the
 precise syntax and semantics of a received objective. If it is
 wrongly formatted, it should be ignored. Within a negotiation
 session, a Negotiation End message (M_END) with a Decline option
 (O_DECLINE) should be sent. An ASA may log such events for
 diagnostic purposes.

 8. On the other hand, the definitions of GRASP objectives are very
 likely to be extended, using the flexibility of CBOR or JSON.
 Therefore, ASAs should be able to deal gracefully with unknown
 components within the values of objectives. The specification
 of an objective should describe how unknown components are to be
 handled (ignored, logged and ignored, or rejected as an error).

 9. If an ASA receives either an Invalid message (M_INVALID) or a
 Negotiation End message (M_END) with a Decline option
 (O_DECLINE), one possible reason is that the peer ASA does not
 support a new feature of either GRASP or the objective in
 question. In such a case, the ASA may choose to repeat the
 operation concerned without using that new feature.

 10. All other possible exceptions should be handled in an orderly
 way. There should be no such thing as an unhandled exception
 (but see point 1 above).

 At a slightly more general level, ASAs are not services in
 themselves, but they automate services. This has a fundamental
 impact on how to design robust ASAs. In general, when an ASA
 observes a particular state (1) of operations of the services/
 resources it controls, it typically aims to improve this state to a
 better state, say (2). Ideally, the ASA is built so that it can
 ensure that any error encountered can still lead to returning to (1)
 instead of a state (3), which is worse than (1). One example
 instance of this principle is "make-before-break" used in
 reconfiguration of routing protocols in manual operations. This
 principle of operations can accordingly be coded into the operation
 of an ASA. The GRASP dry run option mentioned in Section 6 is
 another tool helpful for this ASA design goal of "test-before-make".

10. Security Considerations

 ASAs are intended to run in an environment that is protected by the
 Autonomic Control Plane [RFC8994], admission to which depends on an
 initial secure bootstrap process such as BRSKI [RFC8995]. Those

 documents describe security considerations relating to the use of and
 properties provided by the ACP and BRSKI, respectively. Such an ACP
 can provide keying material for mutual authentication between ASAs as
 well as confidential communication channels for messages between
 ASAs. In some deployments, a secure partition of the link layer
 might be used instead. GRASP itself has significant security
 considerations [RFC8990]. However, this does not relieve ASAs of
 responsibility for security. When ASAs configure or manage network
 elements outside the ACP, potentially in a different physical node,
 they must interact with other non-autonomic software components to
 perform their management functions. The details are specific to each
 case, but this has an important security implication. An ASA might
 act as a loophole by which the managed entity could penetrate the
 security boundary of the ANI. Thus, ASAs must be designed to avoid
 loopholes such as passing on executable code or proxying unverified
 commands and should, if possible, operate in an unprivileged mode.
 In particular, they must use secure coding practices, e.g., carefully
 validate all incoming information and avoid unnecessary elevation of
 privilege. This will apply in particular when an ASA interacts with
 a management component such as a NETCONF server.

 A similar situation will arise if an ASA acts as a gateway between
 two separate autonomic networks, i.e., it has access to two separate
 ACPs. Such an ASA must also be designed to avoid loopholes and to
 validate incoming information from both sides.

 As a reminder, GRASP does not intrinsically provide transactional
 integrity (Section 6).

 As appropriate to their specific functions, ASAs should take account
 of relevant privacy considerations [RFC6973].

 The initial version of the autonomic infrastructure assumes that all
 autonomic nodes are trusted by virtue of their admission to the ACP.
 ASAs are therefore trusted to manipulate any GRASP objective simply
 because they are installed on a node that has successfully joined the
 ACP. In the general case, a node may have multiple roles, and a role
 may use multiple ASAs, each using multiple GRASP objectives.
 Additional mechanisms for the fine-grained authorization of nodes and
 ASAs to manipulate specific GRASP objectives could be designed.
 Meanwhile, we repeat that ASAs should run without special privilege
 if possible. Independently of this, interfaces between ASAs and the
 router configuration and monitoring services of the node can be
 subject to authentication that provides more fine-grained
 authorization for specific services. These additional authentication
 parameters could be passed to an ASA during its instantiation phase.

11. IANA Considerations

 This document has no IANA actions.

12. References

12.1. Normative References

 [RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", STD 94, RFC 8949,
 DOI 10.17487/RFC8949, December 2020,
 <https://www.rfc-editor.org/info/rfc8949>.

 [RFC8990] Bormann, C., Carpenter, B., Ed., and B. Liu, Ed., "GeneRic
 Autonomic Signaling Protocol (GRASP)", RFC 8990,
 DOI 10.17487/RFC8990, May 2021,
 <https://www.rfc-editor.org/info/rfc8990>.

 [RFC8994] Eckert, T., Ed., Behringer, M., Ed., and S. Bjarnason, "An
 Autonomic Control Plane (ACP)", RFC 8994,
 DOI 10.17487/RFC8994, May 2021,
 <https://www.rfc-editor.org/info/rfc8994>.

 [RFC8995] Pritikin, M., Richardson, M., Eckert, T., Behringer, M.,

 and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructure (BRSKI)", RFC 8995, DOI 10.17487/RFC8995,
 May 2021, <https://www.rfc-editor.org/info/rfc8995>.

12.2. Informative References

 [AUTONOMIC-FUNCTION]
 Pierre, P. and L. Ciavaglia, "A Day in the Life of an
 Autonomic Function", Work in Progress, Internet-Draft,
 draft-peloso-anima-autonomic-function-01, 21 March 2016,
 <https://datatracker.ietf.org/doc/html/draft-peloso-anima-
 autonomic-function-01>.

 [CBOR-YANG]
 Veillette, M., Ed., Petrov, I., Ed., Pelov, A., Bormann,
 C., and M. Richardson, "CBOR Encoding of Data Modeled with
 YANG", Work in Progress, Internet-Draft, draft-ietf-core-
 yang-cbor-18, December 2021,
 <https://datatracker.ietf.org/doc/html/draft-ietf-core-
 yang-cbor-18>.

 [DEMOLA06] De Mola, F. and R. Quitadamo, "Towards an Agent Model for
 Future Autonomic Communications", Proceedings of the 7th
 WOA 2006 Workshop From Objects to Agents 51-59, September
 2006.

 [GANA13] ETSI, "Autonomic network engineering for the self-managing
 Future Internet (AFI); Generic Autonomic Network
 Architecture (An Architectural Reference Model for
 Autonomic Networking, Cognitive Networking and Self-
 Management)", GS AFI 002, V1.1.1, April 2013,
 <https://www.etsi.org/deliver/etsi_gs/
 AFI/001_099/002/01.01.01_60/gs_afi002v010101p.pdf>.

 [HUEBSCHER08]
 Huebscher, M. C. and J. A. McCann, "A survey of autonomic
 computing - degrees, models, and applications", ACM
 Computing Surveys (CSUR), Volume 40, Issue 3,
 DOI 10.1145/1380584.1380585, August 2008,
 <https://doi.org/10.1145/1380584.1380585>.

 [IBN-CONCEPTS]
 Clemm, A., Ciavaglia, L., Granville, L. Z., and J.
 Tantsura, "Intent-Based Networking - Concepts and
 Definitions", Work in Progress, Internet-Draft, draft-
 irtf-nmrg-ibn-concepts-definitions-09, 24 March 2022,
 <https://datatracker.ietf.org/doc/html/draft-irtf-nmrg-
 ibn-concepts-definitions-09>.

 [IPJ] Behringer, M., Bormann, C., Carpenter, B. E., Eckert, T.,
 Campos Nobre, J., Jiang, S., Li, Y., and M. C. Richardson,
 "Autonomic Networking Gets Serious", The Internet Protocol
 Journal, Volume 24, Issue 3, Page(s) 2 - 18, ISSN
 1944-1134, October 2021, <https://ipj.dreamhosters.com/wp-
 content/uploads/2021/10/243-ipj.pdf>.

 [MOVAHEDI12]
 Movahedi, Z., Ayari, M., Langar, R., and G. Pujolle, "A
 Survey of Autonomic Network Architectures and Evaluation
 Criteria", IEEE Communications Surveys & Tutorials, Volume
 14, Issue 2, Pages 464 - 490,
 DOI 10.1109/SURV.2011.042711.00078, 2012,
 <https://doi.org/10.1109/SURV.2011.042711.00078>.

 [NFV] ETSI, "Network Functions Virtualisation", SDN and OpenFlow
 World Congress, October 2012,
 <https://portal.etsi.org/NFV/NFV_White_Paper.pdf>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973,
 DOI 10.17487/RFC6973, July 2013,
 <https://www.rfc-editor.org/info/rfc6973>.

 [RFC7575] Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575,
 DOI 10.17487/RFC7575, June 2015,
 <https://www.rfc-editor.org/info/rfc7575>.

 [RFC7665] Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
 Chaining (SFC) Architecture", RFC 7665,
 DOI 10.17487/RFC7665, October 2015,
 <https://www.rfc-editor.org/info/rfc7665>.

 [RFC8368] Eckert, T., Ed. and M. Behringer, "Using an Autonomic
 Control Plane for Stable Connectivity of Network
 Operations, Administration, and Maintenance (OAM)",
 RFC 8368, DOI 10.17487/RFC8368, May 2018,
 <https://www.rfc-editor.org/info/rfc8368>.

 [RFC8991] Carpenter, B., Liu, B., Ed., Wang, W., and X. Gong,
 "GeneRic Autonomic Signaling Protocol Application Program
 Interface (GRASP API)", RFC 8991, DOI 10.17487/RFC8991,
 May 2021, <https://www.rfc-editor.org/info/rfc8991>.

 [RFC8992] Jiang, S., Ed., Du, Z., Carpenter, B., and Q. Sun,
 "Autonomic IPv6 Edge Prefix Management in Large-Scale
 Networks", RFC 8992, DOI 10.17487/RFC8992, May 2021,
 <https://www.rfc-editor.org/info/rfc8992>.

 [RFC8993] Behringer, M., Ed., Carpenter, B., Eckert, T., Ciavaglia,
 L., and J. Nobre, "A Reference Model for Autonomic
 Networking", RFC 8993, DOI 10.17487/RFC8993, May 2021,
 <https://www.rfc-editor.org/info/rfc8993>.

 [ZSM009-1] ETSI, "Zero-touch network and Service Management (ZSM);
 Closed-Loop Automation; Part 1: Enablers", GS ZSM 009-1,
 Version 1.1.1, June 2021,
 <https://www.etsi.org/deliver/etsi_gs/
 ZSM/001_099/00901/01.01.01_60/gs_ZSM00901v010101p.pdf>.

Appendix A. Example Logic Flows

 This appendix describes generic logic flows that combine to act as an
 Autonomic Service Agent (ASA) for resource management. Note that
 these are illustrative examples and are in no sense requirements. As
 long as the rules of GRASP are followed, a real implementation could
 be different. The reader is assumed to be familiar with GRASP
 [RFC8990] and its conceptual API [RFC8991].

 A complete autonomic function for a distributed resource will consist
 of a number of instances of the ASA placed at relevant points in a
 network. Specific details will, of course, depend on the resource
 concerned. One example is IP address prefix management, as specified
 in [RFC8992]. In this case, an instance of the ASA will exist in
 each delegating router.

 An underlying assumption is that there is an initial source of the
 resource in question, referred to here as an origin ASA. The other
 ASAs, known as delegators, obtain supplies of the resource from the
 origin, delegate quantities of the resource to consumers that request
 it, and recover it when no longer needed.

 Another assumption is there is a set of network-wide policy
 parameters, which the origin will provide to the delegators. These
 parameters will control how the delegators decide how much resource

 to provide to consumers. Thus, the ASA logic has two operating
 modes: origin and delegator. When running as an origin, it starts by
 obtaining a quantity of the resource from the NOC, and it acts as a
 source of policy parameters, via both GRASP flooding and GRASP
 synchronization. (In some scenarios, flooding or synchronization
 alone might be sufficient, but this example includes both.)

 When running as a delegator, it starts with an empty resource pool,
 acquires the policy parameters by GRASP synchronization, and
 delegates quantities of the resource to consumers that request it.
 Both as an origin and as a delegator, when its pool is low, it seeks
 quantities of the resource by requesting GRASP negotiation with peer
 ASAs. When its pool is sufficient, it hands out resource to peer
 ASAs in response to negotiation requests. Thus, over time, the
 initial resource pool held by the origin will be shared among all the
 delegators according to demand.

 In theory, a network could include any number of origins and any
 number of delegators, with the only condition being that each
 origin’s initial resource pool is unique. A realistic scenario is to
 have exactly one origin and as many delegators as you like. A
 scenario with no origin is useless.

 An implementation requirement is that resource pools are kept in
 stable storage. Otherwise, if a delegator exits for any reason, all
 the resources it has obtained or delegated are lost. If an origin
 exits, its entire spare pool is lost. The logic for using stable
 storage and for crash recovery is not included in the pseudocode
 below, which focuses on communication between ASAs. Since GRASP
 operations are not intrinsically idempotent, data integrity during
 failure scenarios is the responsibility of the ASA designer. This is
 a complex topic in its own right that is not discussed in the present
 document.

 The description below does not implement GRASP’s dry run function.
 That would require temporarily marking any resource handed out in a
 dry run negotiation as reserved, until either the peer obtains it in
 a live run, or a suitable timeout occurs.

 The main data structures used in each instance of the ASA are:

 * resource_pool: an ordered list of available resources, for
 example. Depending on the nature of the resource, units of
 resource are split when appropriate, and a background garbage
 collector recombines split resources if they are returned to the
 pool.

 * delegated_list: where a delegator stores the resources it has
 given to subsidiary devices.

 Possible main logic flows are below, using a threaded implementation
 model. As noted above, alternative approaches to asynchronous
 operations are possible. The transformation to an event loop model
 should be apparent; each thread would correspond to one event in the
 event loop.

 The GRASP objectives are as follows:

 * ["EX1.Resource", flags, loop_count, value], where the value
 depends on the resource concerned but will typically include its
 size and identification.

 * ["EX1.Params", flags, loop_count, value], where the value will be,
 for example, a JSON object defining the applicable parameters.

 In the outline logic flows below, these objectives are represented
 simply by their names.

 MAIN PROGRAM:

 Create empty resource_pool (and an associated lock)

 Create empty delegated_list
 Determine whether to act as origin
 if origin:
 Obtain initial resource_pool contents from NOC
 Obtain value of EX1.Params from NOC
 Register ASA with GRASP
 Register GRASP objectives EX1.Resource and EX1.Params
 if origin:
 Start FLOODER thread to flood EX1.Params
 Start SYNCHRONIZER listener for EX1.Params
 Start MAIN_NEGOTIATOR thread for EX1.Resource
 if not origin:
 Obtain value of EX1.Params from GRASP flood or synchronization
 Start DELEGATOR thread
 Start GARBAGE_COLLECTOR thread
 good_peer = none
 do forever:
 if resource_pool is low:
 Calculate amount A of resource needed
 Discover peers using GRASP M_DISCOVER / M_RESPONSE
 if good_peer in peers:
 peer = good_peer
 else:
 peer = #any choice among peers
 grasp.request_negotiate("EX1.Resource", peer)
 #i.e., send negotiation request
 Wait for response (M_NEGOTIATE, M_END or M_WAIT)
 if OK:
 if offered amount of resource sufficient:
 Send M_END + O_ACCEPT #negotiation succeeded
 Add resource to pool
 good_peer = peer #remember this choice
 else:
 Send M_END + O_DECLINE #negotiation failed
 good_peer = none #forget this choice
 sleep() #periodic timer suitable for application scenario

 MAIN_NEGOTIATOR thread:

 do forever:
 grasp.listen_negotiate("EX1.Resource")
 #i.e., wait for negotiation request
 Start a separate new NEGOTIATOR thread for requested amount A

 NEGOTIATOR thread:

 Request resource amount A from resource_pool
 if not OK:
 while not OK and A > Amin:
 A = A-1
 Request resource amount A from resource_pool
 if OK:
 Offer resource amount A to peer by GRASP M_NEGOTIATE
 if received M_END + O_ACCEPT:
 #negotiation succeeded
 elif received M_END + O_DECLINE or other error:
 #negotiation failed
 Return resource to resource_pool
 else:
 Send M_END + O_DECLINE #negotiation failed
 #thread exits

 DELEGATOR thread:

 do forever:
 Wait for request or release for resource amount A
 if request:
 Get resource amount A from resource_pool
 if OK:
 Delegate resource to consumer #atomic
 Record in delegated_list #operation

 else:
 Signal failure to consumer
 Signal main thread that resource_pool is low
 else:
 Delete resource from delegated_list
 Return resource amount A to resource_pool

 SYNCHRONIZER thread:

 do forever:
 Wait for M_REQ_SYN message for EX1.Params
 Reply with M_SYNCH message for EX1.Params

 FLOODER thread:

 do forever:
 Send M_FLOOD message for EX1.Params
 sleep() #periodic timer suitable for application scenario

 GARBAGE_COLLECTOR thread:

 do forever:
 Search resource_pool for adjacent resources
 Merge adjacent resources
 sleep() #periodic timer suitable for application scenario

Acknowledgements

 Valuable comments were received from Michael Behringer, Menachem
 Dodge, Martin DÃ¼rst, Toerless Eckert, Thomas Fossati, Alex Galis,
 Bing Liu, Benno Overeinder, Michael Richardson, Rob Wilton, and other
 IESG members.

Authors’ Addresses

 Brian Carpenter
 School of Computer Science
 University of Auckland
 PB 92019
 Auckland 1142
 New Zealand
 Email: brian.e.carpenter@gmail.com

 Laurent Ciavaglia
 Rakuten Mobile
 Paris
 France
 Email: laurent.ciavaglia@rakuten.com

 Sheng Jiang
 Huawei Technologies Co., Ltd
 Q14 Huawei Campus
 156 Beiqing Road
 Hai-Dian District
 Beijing
 100095
 China
 Email: jiangsheng@huawei.com

 Pierre Peloso
 Nokia
 Villarceaux
 91460 Nozay
 France
 Email: pierre.peloso@nokia.com

