
ï»¿

Internet Engineering Task Force (IETF) M. Veillette, Ed.
Request for Comments: 9254 Trilliant Networks Inc.
Category: Standards Track I. Petrov, Ed.
ISSN: 2070-1721 Google Switzerland GmbH
 A. Pelov
 Acklio
 C. Bormann
 UniversitÃ¤t Bremen TZI
 M. Richardson
 Sandelman Software Works
 July 2022

 Encoding of Data Modeled with YANG in the Concise Binary Object
 Representation (CBOR)

Abstract

 YANG (RFC 7950) is a data modeling language used to model
 configuration data, state data, parameters and results of Remote
 Procedure Call (RPC) operations or actions, and notifications.

 This document defines encoding rules for YANG in the Concise Binary
 Object Representation (CBOR) (RFC 8949).

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9254.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Revised BSD License text as described in Section 4.e of the
 Trust Legal Provisions and are provided without warranty as described
 in the Revised BSD License.

Table of Contents

 1. Introduction
 2. Terminology and Notation
 3. Properties of the CBOR Encoding
 3.1. CBOR Diagnostic Notation
 3.2. YANG Schema Item iDentifier
 3.3. Name
 4. Encoding of Representation Nodes
 4.1. The ’leaf’
 4.1.1. Using SIDs in Keys
 4.1.2. Using Names in Keys
 4.2. The ’container’ and Other Nodes from the Data Tree

 4.2.1. Using SIDs in Keys
 4.2.2. Using Names in Keys
 4.3. The ’leaf-list’
 4.3.1. Using SIDs in Keys
 4.3.2. Using Names in Keys
 4.4. The ’list’ and the ’list’ Entries
 4.4.1. Using SIDs in Keys
 4.4.2. Using Names in Keys
 4.5. The ’anydata’
 4.5.1. Using SIDs in Keys
 4.5.2. Using Names in Keys
 4.6. The ’anyxml’
 4.6.1. Using SIDs in Keys
 4.6.2. Using Names in Keys
 5. Encoding of the ’yang-data’ Extension
 5.1. Using SIDs in Keys
 5.2. Using Names in Keys
 6. Representing YANG Data Types in CBOR
 6.1. The Unsigned Integer Types
 6.2. The Integer Types
 6.3. The ’decimal64’ Type
 6.4. The ’string’ Type
 6.5. The ’boolean’ Type
 6.6. The ’enumeration’ Type
 6.7. The ’bits’ Type
 6.8. The ’binary’ Type
 6.9. The ’leafref’ Type
 6.10. The ’identityref’ Type
 6.10.1. SIDs as ’identityref’
 6.10.2. Name as ’identityref’
 6.11. The ’empty’ Type
 6.12. The ’union’ Type
 6.13. The ’instance-identifier’ Type
 6.13.1. SIDs as ’instance-identifier’
 6.13.2. Names as ’instance-identifier’
 7. Content-Types
 8. Security Considerations
 9. IANA Considerations
 9.1. Media Types Registry
 9.2. CoAP Content-Formats Registry
 9.3. CBOR Tags Registry
 10. References
 10.1. Normative References
 10.2. Informative References
 Acknowledgments
 Authors’ Addresses

1. Introduction

 The specification of the YANG 1.1 data modeling language [RFC7950]
 defines an XML encoding for data instances, i.e., contents of
 configuration datastores, state data, RPC inputs and outputs, action
 inputs and outputs, and event notifications.

 An additional set of encoding rules has been defined in [RFC7951]
 based on "The JavaScript Object Notation (JSON) Data Interchange
 Format" [RFC8259].

 The aim of this document is to define a set of encoding rules for the
 Concise Binary Object Representation (CBOR) [RFC8949], collectively
 called "YANG-CBOR". The resulting encoding is more compact compared
 to XML and JSON and more suitable for constrained nodes and/or
 constrained networks, as defined by [RFC7228].

2. Terminology and Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 SID values (and the SID deltas computed from them) shown in the
 examples are example values; these examples do not allocate the SIDs
 shown for specific items in the modules.

 The following terms are defined in [RFC7950]:

 * action

 * anydata

 * anyxml

 * data node

 * data tree

 * datastore

 * feature

 * identity

 * module

 * notification

 * RPC

 * schema node

 * submodule

 The following term is defined in [RFC8040]:

 * yang-data extension

 The following term is defined in [RFC8791]:

 * YANG data structure

 This specification also makes use of the following terminology:

 YANG Schema Item iDentifier (or "YANG SID" or simply "SID"):
 63-bit unsigned integer used to identify different YANG items.

 delta:
 Difference between the current YANG SID and a reference YANG SID.
 A reference YANG SID is defined for each context for which deltas
 are used.

 absolute SID:
 A YANG SID that is not encoded as a delta. This is usually called
 out explicitly only in positions where normally a delta would be
 found.

 representation tree:
 A YANG data tree, possibly enclosed by a representation of a
 schema node, such as a YANG data structure, a notification, an
 RPC, or an action.

 representation node:
 A node in a representation tree, i.e., a data tree node, or a
 representation of a schema node, such as a YANG data structure, a
 notification, an RPC, or an action.

 item:
 A schema node, an identity, a module, or a feature defined using
 the YANG modeling language.

 list entry:

 The data associated with a single entry of a list (see Section 7.8
 of [RFC7950]).

 container-like instance:
 An instance of a container, a YANG data structure, notification
 contents, RPC input, RPC output, action input, or action output
 (Section 4.2); a list entry in a list (Section 4.4); or an anydata
 node (Section 4.5).

 parent (of a representation node):
 The schema node of the closest enclosing representation node in
 which a given representation node is defined.

3. Properties of the CBOR Encoding

 This document defines CBOR encoding rules for YANG data trees and
 their subtrees.

 A YANG data tree can be enclosed by a representation of a schema
 node, such as a YANG data structure, a notification, an RPC, or an
 action; this is called a representation tree. The data tree nodes
 and the enclosing schema node representation, if any, are
 collectively called the representation nodes.

 A representation node, such as a container, list entry, YANG data
 structure, notification, RPC input, RPC output, action input, action
 output, or anydata node, is serialized using a CBOR map in which each
 schema node defined within is encoded using a key and a value. This
 specification supports two types of CBOR keys: YANG Schema Item
 iDentifier (YANG SID), as defined in Section 3.2, and names, as
 defined in Section 3.3. Each of these key types is encoded using a
 specific CBOR type that allows their interpretation during the
 deserialization process. Protocols or mechanisms implementing this
 specification can mandate the use of a specific key type or allow the
 generator to choose freely per key.

 In order to minimize the size of the encoded data, the mapping avoids
 any unnecessary meta-information beyond that directly provided by the
 CBOR basic generic data model (Section 2 of [RFC8949]). For
 instance, CBOR tags are used solely in the case of an absolute SID,
 anyxml data nodes, or the union datatype to explicitly distinguish
 the use of different YANG datatypes encoded using the same CBOR major
 type.

 Unless specified otherwise by the protocol or mechanism implementing
 this specification, the indefinite length encoding, as defined in
 Section 3.2 of [RFC8949], SHALL be supported by the CBOR decoders
 employed with YANG-CBOR. (This enables an implementation to begin
 emitting an array or map before the number of entries in that
 structure is known, possibly also avoiding excessive locking or race
 conditions. On the other hand, it deprives the receiver of the
 encoded data from advance announcement about some size information,
 so a generator should choose indefinite length encoding only when
 these benefits do accrue.)

 Data nodes implemented using a CBOR array, map, byte string, or text
 string can be instantiated but empty. In this case, they are encoded
 with a length of zero.

 When representation nodes are serialized using the rules defined by
 this specification as part of an application payload, the payload
 SHOULD include information that would allow each node to be
 identified in a stateless way, for instance, the SID number
 associated with the node, the SID delta from another SID in the
 application payload, the namespace-qualified name, or the instance-
 identifier.

 Examples in Section 4 include a root CBOR map with a single entry
 having a key set to either a namespace-qualified name or a SID. This
 root CBOR map is provided only as a typical usage example and is not
 part of the present encoding rules. Only the value within this CBOR

 map is compulsory.

3.1. CBOR Diagnostic Notation

 Within this document, CBOR binary contents are represented using an
 equivalent textual form called CBOR diagnostic notation, as defined
 in Section 8 of [RFC8949]. This notation is used strictly for
 documentation purposes and is never used in the data serialization.
 Table 1 below provides a summary of this notation.

 +==========+======+====================+===========+==========+
 | CBOR | CBOR | Diagnostic | Example | CBOR |
 | Content | Type | Notation | | Encoding |
 +==========+======+====================+===========+==========+
 | Unsigned | 0 | Decimal digits | 123 | 18 7B |
 | integer | | | | |
 +----------+------+--------------------+-----------+----------+
 | Negative | 1 | Decimal digits | -123 | 38 7A |
 | integer | | prefixed by a | | |
 | | | minus sign | | |
 +----------+------+--------------------+-----------+----------+
 | Byte | 2 | Hexadecimal value | h’F15C’ | 42 F15C |
 | string | | enclosed between | | |
 | | | single quotes and | | |
 | | | prefixed by an ’h’ | | |
 +----------+------+--------------------+-----------+----------+
 | Text | 3 | String of Unicode | "txt" | 63 |
 | string | | characters | | 747874 |
 | | | enclosed between | | |
 | | | double quotes | | |
 +----------+------+--------------------+-----------+----------+
 | Array | 4 | Comma-separated | [1, 2] | 82 01 02 |
 | | | list of values | | |
 | | | within square | | |
 | | | brackets | | |
 +----------+------+--------------------+-----------+----------+
 | Map | 5 | Comma-separated | { 1: 123, | A2 |
 | | | list of key : | 2: 456 } | 01187B |
 | | | value pairs within | | 021901C8 |
 | | | curly braces | | |
 +----------+------+--------------------+-----------+----------+
 | Boolean | 7/20 | false | false | F4 |
 +----------+------+--------------------+-----------+----------+
 | | 7/21 | true | true | F5 |
 +----------+------+--------------------+-----------+----------+
 | Null | 7/22 | null | null | F6 |
 +----------+------+--------------------+-----------+----------+
 | Not | 7/23 | undefined | undefined | F7 |
 | assigned | | | | |
 +----------+------+--------------------+-----------+----------+

 Table 1: CBOR Diagnostic Notation Summary

 Note: CBOR binary contents shown in this specification are annotated
 with comments. These comments are delimited by slashes ("/"), as
 defined in Appendix G.6 of [RFC8610].

3.2. YANG Schema Item iDentifier

 Some of the items defined in YANG [RFC7950] require the use of a
 unique identifier. In both the Network Configuration Protocol
 (NETCONF) [RFC6241] and RESTCONF [RFC8040], these identifiers are
 implemented using text strings. To allow the implementation of data
 models defined in YANG in constrained devices and constrained
 networks, a more compact method to identify YANG items is required.
 This compact identifier, called "YANG Schema Item iDentifier", is an
 unsigned integer limited to 63 bits of range (i.e.,
 0..9223372036854775807 or 0..0x7fffffffffffffff). The following
 items are identified using YANG SIDs (often shortened to SIDs):

 * identities

 * data nodes

 * RPCs and associated input(s) and output(s)

 * actions and associated input(s) and output(s)

 * YANG data structures

 * notifications and associated information

 * YANG modules and features

 | Note that any structuring of modules into submodules is
 | transparent to YANG-CBOR: SIDs are not allocated for the names
 | of submodules, and any items within a submodule are effectively
 | allocated SIDs as part of processing the module that includes
 | them.

 To minimize their size, SIDs used as keys in CBOR maps are encoded
 using deltas, i.e., signed (negative or unsigned) integers that are
 added to the reference SID applying to the map. The reference SID of
 an outermost map is zero, unless a different reference SID is
 unambiguously conferred from the environment in which the outermost
 map is used. The reference SID of a map that is most directly
 embedded in a map entry with a name-based key is zero. For all other
 maps, the reference SID is the SID computed for the map entry it is
 most directly embedded in. (The embedding may be indirect if an
 array intervenes, e.g., in a YANG list.) Where absolute SIDs are
 desired in map key positions (where a bare integer implies a delta),
 they need to be identified as absolute SID values by using CBOR tag
 number 47 (as defined in Section 4.2.1).

 Thus, conversion from SIDs to deltas and back to SIDs is a stateless
 process solely based on the data serialized or deserialized combined
 with, potentially, an outermost reference SID unambiguously conferred
 by the environment.

 Mechanisms and processes used to assign SIDs to YANG items and to
 guarantee their uniqueness are outside the scope of the present
 specification. If SIDs are to be used, the present specification is
 used in conjunction with a specification defining this management. A
 related document, i.e., [CORE-SID], is intended to serve as the
 definitive way to assign SID values for YANG modules managed by the
 IETF and recommends itself for YANG modules managed by non-IETF
 entities, as well. The present specification has been designed to
 allow different methods of assignment to be used within separate
 domains.

 To provide implementations with a way to internally indicate the
 absence of a SID, the SID value 0 is reserved and will not be
 allocated; it is not used in interchange.

3.3. Name

 This specification also supports the encoding of YANG item
 identifiers as text strings, similar to those used by the JSON
 encoding of data modeled with YANG [RFC7951]. This approach can be
 used to avoid the management overhead associated with SID allocation.
 The main drawback is the significant increase in size of the encoded
 data.

 YANG item identifiers implemented using names MUST be in one of the
 following forms:

 * simple -- the identifier of the YANG item (i.e., schema node or
 identity).

 * namespace-qualified -- the identifier of the YANG item is prefixed
 with the name of the module in which this item is defined,
 separated by the colon character (":").

 The name of a module determines the namespace of all YANG items
 defined in that module. If an item is defined in a submodule, then
 the namespace-qualified name uses the name of the main module to
 which the submodule belongs.

 ABNF syntax [RFC5234] of a name is shown in Figure 1, where the
 production for "identifier" is defined in Section 14 of [RFC7950].

 name = [identifier ":"] identifier

 Figure 1: ABNF Production for a Simple or Namespace-Qualified Name

 A namespace-qualified name MUST be used for all members of a top-
 level CBOR map and then also whenever the namespaces of the
 representation node and its parent node are different. In all other
 cases, the simple form of the name MUST be used.

 Definition example:

 module example-foomod {
 container top {
 leaf foo {
 type uint8;
 }
 }
 }

 module example-barmod {
 import example-foomod {
 prefix "foomod";
 }
 augment "/foomod:top" {
 leaf bar {
 type boolean;
 }
 }
 }

 A valid CBOR encoding of the ’top’ container is as follows.

 CBOR diagnostic notation:

 {
 "example-foomod:top": {
 "foo": 54,
 "example-barmod:bar": true
 }
 }

 Both the ’top’ container and the ’bar’ leaf defined in a different
 YANG module as its parent container are encoded as namespace-
 qualified names. The ’foo’ leaf defined in the same YANG module as
 its parent container is encoded as a simple name.

4. Encoding of Representation Nodes

 Representation nodes defined using the YANG modeling language are
 encoded using CBOR [RFC8949], based on the rules defined in this
 section. We assume that the reader is already familiar with both
 YANG [RFC7950] and CBOR [RFC8949].

4.1. The ’leaf’

 A ’leaf’ MUST be encoded accordingly to its datatype using one of the
 encoding rules specified in Section 6.

 The following examples show the encoding of a ’hostname’ leaf using a
 SID or a name.

 Definition example adapted from [RFC6991] and [RFC7317]:

 typedef domain-name {
 type string {
 pattern
 ’((([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.)*’
 + ’([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.?)’
 + ’|\.’;
 length "1..253";
 }
 }

 leaf hostname {
 type inet:domain-name;
 }

4.1.1. Using SIDs in Keys

 As with all examples below, the delta in the outermost map assumes a
 reference YANG SID (current schema node) of 0.

 CBOR diagnostic notation:

 {
 1752 : "myhost.example.com" / hostname (SID 1752) /
 }

 CBOR encoding:

 A1 # map(1)
 19 06D8 # unsigned(1752)
 72 # text(18)
 6D79686F73742E6578616D706C652E636F6D # "myhost.example.com"

4.1.2. Using Names in Keys

 CBOR diagnostic notation:

 {
 "ietf-system:hostname" : "myhost.example.com"
 }

 CBOR encoding:

 A1 # map(1)
 74 # text(20)
 696574662D73797374656D3A686F73746E616D65
 72 # text(18)
 6D79686F73742E6578616D706C652E636F6D

4.2. The ’container’ and Other Nodes from the Data Tree

 Instances of containers, YANG data structures, notification contents,
 RPC inputs, RPC outputs, action inputs, and action outputs MUST be
 encoded using a CBOR map data item (major type 5). The same encoding
 is also used for the list entries in a list (Section 4.4) and for
 anydata nodes (Section 4.5). Collectively, we speak of these
 instances as "container-like instances".

 A map consists of pairs of data items, with each pair consisting of a
 key and a value. Each key within the CBOR map is set to a schema
 node identifier, and each value is set to the value of this
 representation node according to the instance datatype.

 This specification supports two types of CBOR map keys: SID, as
 defined in Section 3.2, and names, as defined in Section 3.3.

 The following examples show the encoding of a ’system-state’
 container representation instance using SIDs or names.

 Definition example adapted from [RFC6991] and [RFC7317]:

 typedef date-and-time {
 type string {
 pattern ’\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}(\.\d+)?’
 + ’(Z|[\+\-]\d{2}:\d{2})’;
 }
 }

 container system-state {

 container clock {
 leaf current-datetime {
 type date-and-time;
 }

 leaf boot-datetime {
 type date-and-time;
 }
 }
 }

4.2.1. Using SIDs in Keys

 In the context of containers and other nodes from the data tree, CBOR
 map keys within inner CBOR maps can be encoded using deltas (bare
 integers) or absolute SIDs (tagged with tag number 47).

 Delta values are computed as follows:

 * In the case of a ’container’, deltas are equal to the SID of the
 current representation node minus the SID of the parent
 ’container’.

 * In the case of a ’list’, deltas are equal to the SID of the
 current representation node minus the SID of the parent ’list’.

 * In the case of an ’RPC input’ or ’RPC output’, deltas are equal to
 the SID of the current representation node minus the SID of the
 ’RPC’.

 * In the case of an ’action input’ or ’action output’, deltas are
 equal to the SID of the current representation node minus the SID
 of the ’action’.

 * In the case of a ’notification content’, deltas are equal to the
 SID of the current representation node minus the SID of the
 ’notification’.

 CBOR diagnostic notation:

 {
 1720 : { / system-state (SID 1720) /
 1 : { / clock (SID 1721) /
 2 : "2015-10-02T14:47:24Z-05:00", / current-datetime(SID 1723)/
 1 : "2015-09-15T09:12:58Z-05:00" / boot-datetime (SID 1722) /
 }
 }
 }

 CBOR encoding:

 A1 # map(1)
 19 06B8 # unsigned(1720)
 A1 # map(1)
 01 # unsigned(1)
 A2 # map(2)
 02 # unsigned(2)
 78 1A # text(26)
 323031352D31302D30325431343A34373A32345A2D30353A3030
 01 # unsigned(1)
 78 1A # text(26)
 323031352D30392D31355430393A31323A35385A2D30353A3030

 Figure 2: System State Clock Encoding

4.2.2. Using Names in Keys

 CBOR map keys implemented using names MUST be encoded using a CBOR
 text string data item (major type 3). A namespace-qualified name
 MUST be used each time the namespace of a representation node and its
 parent differ. In all other cases, the simple form of the name MUST
 be used. Names and namespaces are defined in Section 4 of [RFC7951].

 The following example shows the encoding of a ’system’ container
 representation node instance using names.

 CBOR diagnostic notation:

 {
 "ietf-system:system-state" : {
 "clock" : {
 "current-datetime" : "2015-10-02T14:47:24Z-05:00",
 "boot-datetime" : "2015-09-15T09:12:58Z-05:00"
 }
 }
 }

 CBOR encoding:

 A1 # map(1)
 78 18 # text(24)
 696574662D73797374656D3A73797374656D2D7374617465
 A1 # map(1)
 65 # text(5)
 636C6F636B # "clock"
 A2 # map(2)
 70 # text(16)
 63757272656E742D6461746574696D65
 78 1A # text(26)
 323031352D31302D30325431343A34373A32345A2D30353A3030
 6D # text(13)
 626F6F742D6461746574696D65
 78 1A # text(26)
 323031352D30392D31355430393A31323A35385A2D30353A3030

4.3. The ’leaf-list’

 A leaf-list MUST be encoded using a CBOR array data item (major type
 4). Each entry of this array MUST be encoded accordingly to its
 datatype using one of the encoding rules specified in Section 6.

 The following example shows the encoding of the ’search’ leaf-list
 representation node instance containing two entries: "ietf.org" and
 "ieee.org".

 Definition example adapted from [RFC6991] and [RFC7317]:

 typedef domain-name {
 type string {
 pattern
 ’((([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.)*’
 + ’([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.?)’
 + ’|\.’;
 length "1..253";
 }
 }

 leaf-list search {
 type domain-name;
 ordered-by user;
 }

4.3.1. Using SIDs in Keys

 CBOR diagnostic notation:

 {
 1746 : ["ietf.org", "ieee.org"] / search (SID 1746) /
 }

 CBOR encoding:

 A1 # map(1)
 19 06D2 # unsigned(1746)
 82 # array(2)
 68 # text(8)
 696574662E6F7267 # "ietf.org"
 68 # text(8)
 696565652E6F7267 # "ieee.org"

4.3.2. Using Names in Keys

 CBOR diagnostic notation:

 {
 "ietf-system:search" : ["ietf.org", "ieee.org"]
 }

 CBOR encoding:

 A1 # map(1)
 72 # text(18)
 696574662D73797374656D3A736561726368 # "ietf-system:search"
 82 # array(2)
 68 # text(8)
 696574662E6F7267 # "ietf.org"
 68 # text(8)
 696565652E6F7267 # "ieee.org"

4.4. The ’list’ and the ’list’ Entries

 A list or a subset of a list MUST be encoded using a CBOR array data
 item (major type 4). Each list entry within this CBOR array is
 encoded using a CBOR map data item (major type 5) based on the
 encoding rules of a container-like instance, as defined in
 Section 4.2.

 It is important to note that this encoding rule also applies to a
 ’list’ representation node instance that has a single entry.

 The following examples show the encoding of a ’server’ list using
 SIDs or names.

 Definition example adapted from [RFC7317]:

 list server {
 key name;

 leaf name {
 type string;
 }
 choice transport {
 case udp {
 container udp {
 leaf address {
 type host;
 mandatory true;
 }
 leaf port {
 type port-number;
 }
 }
 }
 }

 leaf association-type {
 type enumeration {
 enum server;
 enum peer;
 enum pool;
 }
 default server;
 }
 leaf iburst {
 type boolean;
 default false;
 }
 leaf prefer {
 type boolean;
 default false;
 }
 }

4.4.1. Using SIDs in Keys

 The encoding rules of each ’list’ entry are defined in Section 4.2.1.

 CBOR diagnostic notation:

 {
 1756 : [/ server (SID 1756) /
 {
 3 : "NRC TIC server", / name (SID 1759) /
 5 : { / udp (SID 1761) /
 1 : "tic.nrc.ca", / address (SID 1762) /
 2 : 123 / port (SID 1763) /
 },
 1 : 0, / association-type (SID 1757) /
 2 : false, / iburst (SID 1758) /
 4 : true / prefer (SID 1760) /
 },
 {
 3 : "NRC TAC server", / name (SID 1759) /
 5 : { / udp (SID 1761) /
 1 : "tac.nrc.ca" / address (SID 1762) /
 }
 }
]
 }

 CBOR encoding:

 A1 # map(1)
 19 06DC # unsigned(1756)
 82 # array(2)
 A5 # map(5)
 03 # unsigned(3)
 6E # text(14)
 4E52432054494320736572766572 # "NRC TIC server"
 05 # unsigned(5)
 A2 # map(2)
 01 # unsigned(1)
 6A # text(10)
 7469632E6E72632E6361 # "tic.nrc.ca"
 02 # unsigned(2)
 18 7B # unsigned(123)
 01 # unsigned(1)
 00 # unsigned(0)
 02 # unsigned(2)
 F4 # primitive(20)
 04 # unsigned(4)
 F5 # primitive(21)
 A2 # map(2)
 03 # unsigned(3)
 6E # text(14)
 4E52432054414320736572766572 # "NRC TAC server"

 05 # unsigned(5)
 A1 # map(1)
 01 # unsigned(1)
 6A # text(10)
 7461632E6E72632E6361 # "tac.nrc.ca"

4.4.2. Using Names in Keys

 The encoding rules of each ’list’ entry are defined in Section 4.2.2.

 CBOR diagnostic notation:

 {
 "ietf-system:server" : [
 {
 "name" : "NRC TIC server",
 "udp" : {
 "address" : "tic.nrc.ca",
 "port" : 123
 },
 "association-type" : 0,
 "iburst" : false,
 "prefer" : true
 },
 {
 "name" : "NRC TAC server",
 "udp" : {
 "address" : "tac.nrc.ca"
 }
 }
]
 }

 CBOR encoding:

 A1 # map(1)
 72 # text(18)
 696574662D73797374656D3A736572766572
 82 # array(2)
 A5 # map(5)
 64 # text(4)
 6E616D65 # "name"
 6E # text(14)
 4E52432054494320736572766572
 63 # text(3)
 756470 # "udp"
 A2 # map(2)
 67 # text(7)
 61646472657373 # "address"
 6A # text(10)
 7469632E6E72632E6361 # "tic.nrc.ca"
 64 # text(4)
 706F7274 # "port"
 18 7B # unsigned(123)
 70 # text(16)
 6173736F63696174696F6E2D74797065
 00 # unsigned(0)
 66 # text(6)
 696275727374 # "iburst"
 F4 # primitive(20)
 66 # text(6)
 707265666572 # "prefer"
 F5 # primitive(21)
 A2 # map(2)
 64 # text(4)
 6E616D65 # "name"
 6E # text(14)
 4E52432054414320736572766572
 63 # text(3)
 756470 # "udp"
 A1 # map(1)

 67 # text(7)
 61646472657373 # "address"
 6A # text(10)
 7461632E6E72632E6361 # "tac.nrc.ca"

4.5. The ’anydata’

 An anydata node serves as a container for an arbitrary set of
 representation nodes that otherwise appear as normal YANG-modeled
 data. An anydata representation node instance is encoded using the
 same rules as a container, i.e., using a CBOR map data item (major
 type 5) based on the encoding rules of a container-like instance, as
 defined in Section 4.2.

 The following example shows a possible use of an anydata node. In
 this example, an anydata node is used to define a representation node
 containing a notification event; this representation node can be part
 of a YANG list to create an event logger.

 Definition example:

 module event-log {
 ...
 anydata last-event; // SID 60123
 }

 This example also assumes the assistance of the following
 notification.

 module example-port {
 ...

 notification example-port-fault { // SID 60200
 leaf port-name { // SID 60201
 type string;
 }
 leaf port-fault { // SID 60202
 type string;
 }
 }
 }

4.5.1. Using SIDs in Keys

 CBOR diagnostic notation:

 {
 60123 : { / last-event (SID 60123) /
 77 : { / example-port-fault (SID 60200) /
 1 : "0/4/21", / port-name (SID 60201) /
 2 : "Open pin 2" / port-fault (SID 60202) /
 }
 }
 }

 CBOR encoding:

 A1 # map(1)
 19 EADB # unsigned(60123)
 A1 # map(1)
 18 4D # unsigned(77)
 A2 # map(2)
 01 # unsigned(1)
 66 # text(6)
 302F342F3231 # "0/4/21"
 02 # unsigned(2)
 6A # text(10)
 4F70656E2070696E2032 # "Open pin 2"

 In some implementations, it might be simpler to use the absolute SID
 encoding (tag number 47) for the anydata root element. CBOR

 diagnostic notation:

 {
 60123 : { / last-event (SID 60123) /
 47(60200) : { / event-port-fault (SID 60200) /
 1 : "0/4/21", / port-name (SID 60201) /
 2 : "Open pin 2" / port-fault (SID 60202) /
 }
 }
 }

4.5.2. Using Names in Keys

 CBOR diagnostic notation:

 {
 "event-log:last-event" : {
 "example-port:example-port-fault" : {
 "port-name" : "0/4/21",
 "port-fault" : "Open pin 2"
 }
 }
 }

 CBOR encoding:

 A1 # map(1)
 74 # text(20)
 6576656E742D6C6F673A6C6173742D6576656E74
 A1 # map(1)
 78 1F # text(31)
 6578616D706C652D706F72743A
 6578616D706C652D706F72742D6661756C74
 A2 # map(2)
 69 # text(9)
 706F72742D6E616D65 # "port-name"
 66 # text(6)
 302F342F3231 # "0/4/21"
 6A # text(10)
 706F72742D6661756C74 # "port-fault"
 6A # text(10)
 4F70656E2070696E2032 # "Open pin 2"

4.6. The ’anyxml’

 An anyxml representation node is used to serialize an arbitrary CBOR
 content, i.e., its value can be any CBOR binary object. (The "xml"
 in the name is a misnomer that only applied to YANG-XML [RFC7950].)
 An anyxml value MAY contain CBOR data items tagged with one of the
 tags listed in Section 9.3. The tags listed in Section 9.3 SHALL be
 supported.

 The following example shows a valid CBOR-encoded anyxml
 representation node instance consisting of a CBOR array containing
 the CBOR simple values ’true’, ’null’, and ’true’.

 Definition example adapted from [RFC7951]:

 module bar-module {
 ...
 anyxml bar; // SID 60000
 }

4.6.1. Using SIDs in Keys

 CBOR diagnostic notation:

 {
 60000 : [true, null, true] / bar (SID 60000) /
 }

 CBOR encoding:

 A1 # map(1)
 19 EA60 # unsigned(60000)
 83 # array(3)
 F5 # primitive(21)
 F6 # primitive(22)
 F5 # primitive(21)

4.6.2. Using Names in Keys

 CBOR diagnostic notation:

 {
 "bar-module:bar" : [true, null, true] / bar (SID 60000) /
 }

 CBOR encoding:

 A1 # map(1)
 6E # text(14)
 6261722D6D6F64756C653A626172 # "bar-module:bar"
 83 # array(3)
 F5 # primitive(21)
 F6 # primitive(22)
 F5 # primitive(21)

5. Encoding of the ’yang-data’ Extension

 The yang-data extension [RFC8040] is used to define data structures
 in YANG that are not intended to be implemented as part of a
 datastore.

 The yang-data extension will specify a container that MUST be encoded
 using the encoding rules of nodes of data trees, as defined in
 Section 4.2.

 Just like YANG containers, the yang-data extension can be encoded
 using either SIDs or names.

 Definition example adapted from Appendix A of [CORE-COMI]:

 module ietf-coreconf {
 ...

 import ietf-restconf {
 prefix rc;
 }

 rc:yang-data yang-errors {
 container error {
 leaf error-tag {
 type identityref {
 base error-tag;
 }
 }
 leaf error-app-tag {
 type identityref {
 base error-app-tag;
 }
 }
 leaf error-data-node {
 type instance-identifier;
 }
 leaf error-message {
 type string;
 }
 }
 }
 }

5.1. Using SIDs in Keys

 The yang-data extensions encoded using SIDs are carried in a CBOR map
 containing a single item pair. The key of this item is set to the
 SID assigned to the yang-data extension container; the value is set
 to the CBOR encoding of this container, as defined in Section 4.2.

 This example shows a serialization example of the yang-errors yang-
 data extension, as defined in [CORE-COMI], using SIDs, as defined in
 Section 3.2.

 CBOR diagnostic notation:

 {
 1024 : { / error (SID 1024) /
 4 : 1011, / error-tag (SID 1028) /
 / = invalid-value (SID 1011) /
 1 : 1018, / error-app-tag (SID 1025) /
 / = not-in-range (SID 1018) /
 2 : 1740, / error-data-node (SID 1026) /
 / = timezone-utc-offset (SID 1740) /
 3 : "Maximum exceeded" / error-message (SID 1027) /
 }
 }

 CBOR encoding:

 A1 # map(1)
 19 0400 # unsigned(1024)
 A4 # map(4)
 04 # unsigned(4)
 19 03F3 # unsigned(1011)
 01 # unsigned(1)
 19 03FA # unsigned(1018)
 02 # unsigned(2)
 19 06CC # unsigned(1740)
 03 # unsigned(3)
 70 # text(16)
 4D6178696D756D206578636565646564 # "Maximum exceeded"

5.2. Using Names in Keys

 The yang-data extensions encoded using names are carried in a CBOR
 map containing a single item pair. The key of this item is set to
 the namespace-qualified name of the yang-data extension container;
 the value is set to the CBOR encoding of this container, as defined
 in Section 4.2.

 This example shows a serialization example of the yang-errors yang-
 data extension, as defined in [CORE-COMI], using names, as defined
 Section 3.3.

 CBOR diagnostic notation:

 {
 "ietf-coreconf:error" : {
 "error-tag" : "invalid-value",
 "error-app-tag" : "not-in-range",
 "error-data-node" : "timezone-utc-offset",
 "error-message" : "Maximum exceeded"
 }
 }

 CBOR encoding:

 A1 # map(1)
 73 # text(19)
 696574662D636F7265636F6E663A6572726F72 # "ietf-coreconf:error"
 A4 # map(4)
 69 # text(9)
 6572726F722D746167 # "error-tag"

 6D # text(13)
 696E76616C69642D76616C7565 # "invalid-value"
 6D # text(13)
 6572726F722D6170702D746167 # "error-app-tag"
 6C # text(12)
 6E6F742D696E2D72616E6765 # "not-in-range"
 6F # text(15)
 6572726F722D646174612D6E6F6465 # "error-data-node"
 73 # text(19)
 74696D657A6F6E652D7574632D6F6666736574
 # "timezone-utc-offset"
 6D # text(13)
 6572726F722D6D657373616765 # "error-message"
 70 # text(16)
 4D6178696D756D206578636565646564 # "Maximum exceeded"

6. Representing YANG Data Types in CBOR

 The CBOR encoding of an instance of a leaf or leaf-list
 representation node depends on the built-in type of that
 representation node. The following subsection defines the CBOR
 encoding of each built-in type supported by YANG, as listed in
 Section 4.2.4 of [RFC7950]. Each subsection shows an example value
 assigned to a representation node instance of the discussed built-in
 type.

6.1. The Unsigned Integer Types

 Leafs of type uint8, uint16, uint32, and uint64 MUST be encoded using
 a CBOR unsigned integer data item (major type 0).

 The following example shows the encoding of an ’mtu’ leaf
 representation node instance set to 1280 bytes.

 Definition example adapted from [RFC8344]:

 leaf mtu {
 type uint16 {
 range "68..max";
 }
 }

 CBOR diagnostic notation: 1280

 CBOR encoding: 19 0500

6.2. The Integer Types

 Leafs of type int8, int16, int32, and int64 MUST be encoded using
 either a CBOR unsigned integer (major type 0) or a CBOR negative
 integer (major type 1), depending on the actual value.

 The following example shows the encoding of a ’timezone-utc-offset’
 leaf representation node instance set to -300 minutes.

 Definition example adapted from [RFC7317]:

 leaf timezone-utc-offset {
 type int16 {
 range "-1500 .. 1500";
 }
 }

 CBOR diagnostic notation: -300

 CBOR encoding: 39 012B

6.3. The ’decimal64’ Type

 Leafs of type decimal64 MUST be encoded using a decimal fraction, as
 defined in Section 3.4.4 of [RFC8949].

 The following example shows the encoding of a ’my-decimal’ leaf
 representation node instance set to 2.57.

 Definition example adapted from [RFC7317]:

 leaf my-decimal {
 type decimal64 {
 fraction-digits 2;
 range "1 .. 3.14 | 10 | 20..max";
 }
 }

 CBOR diagnostic notation: 4([-2, 257])

 CBOR encoding: C4 82 21 19 0101

6.4. The ’string’ Type

 Leafs of type string MUST be encoded using a CBOR text string data
 item (major type 3).

 The following example shows the encoding of a ’name’ leaf
 representation node instance set to "eth0".

 Definition example adapted from [RFC8343]:

 leaf name {
 type string;
 }

 CBOR diagnostic notation: "eth0"

 CBOR encoding: 64 65746830

6.5. The ’boolean’ Type

 Leafs of type boolean MUST be encoded using a CBOR simple value
 ’true’ (major type 7, additional information 21) or ’false’ (major
 type 7, additional information 20).

 The following example shows the encoding of an ’enabled’ leaf
 representation node instance set to ’true’.

 Definition example adapted from [RFC7317]:

 leaf enabled {
 type boolean;
 }

 CBOR diagnostic notation: true

 CBOR encoding: F5

6.6. The ’enumeration’ Type

 Leafs of type enumeration MUST be encoded using a CBOR unsigned
 integer (major type 0) or CBOR negative integer (major type 1),
 depending on the actual value, or exceptionally as a tagged text
 string (see below). Enumeration values are either explicitly
 assigned using the YANG statement ’value’ or automatically assigned
 based on the algorithm defined in Section 9.6.4.2 of [RFC7950].

 The following example shows the encoding of an ’oper-status’ leaf
 representation node instance set to ’testing’.

 Definition example adapted from [RFC7317]:

 leaf oper-status {
 type enumeration {
 enum up { value 1; }

 enum down { value 2; }
 enum testing { value 3; }
 enum unknown { value 4; }
 enum dormant { value 5; }
 enum not-present { value 6; }
 enum lower-layer-down { value 7; }
 }
 }

 CBOR diagnostic notation: 3

 CBOR encoding: 03

 Values of ’enumeration’ types defined in a ’union’ type MUST be
 encoded using a CBOR text string data item (major type 3) and MUST
 contain one of the names assigned by ’enum’ statements in YANG (see
 also Section 6.12). The encoding MUST be enclosed by the enumeration
 CBOR tag, as specified in Section 9.3.

 Definition example adapted from [RFC7950]:

 type union {
 type int32;
 type enumeration {
 enum unbounded;
 }
 }

 CBOR diagnostic notation: 44("unbounded")

 CBOR encoding: D8 2C 69 756E626F756E646564

6.7. The ’bits’ Type

 Keeping in mind that bit positions are either explicitly assigned
 using the YANG statement ’position’ or automatically assigned based
 on the algorithm defined in Section 9.7.4.2 of [RFC7950], each
 element of type bits could be seen as a set of bit positions (or
 offsets from position 0) that have a value of either 1, which
 represents the bit being set, or 0, which represents that the bit is
 not set.

 Leafs of type bits MUST be encoded either using a CBOR array (major
 type 4) or byte string (major type 2) or exceptionally as a tagged
 text string (see below). In case CBOR array representation is used,
 each element is either (1) a positive integer (major type 0 with
 value 0 being disallowed) that can be used to calculate the offset of
 the next byte string or (2) a byte string (major type 2) that carries
 the information regarding whether certain bits are set or not. The
 initial offset value is 0, and each unsigned integer modifies the
 offset value of the next byte string by the integer value multiplied
 by 8. For example, if the bit offset is 0 and there is an integer
 with value 5, the first byte of the byte string that follows will
 represent bit positions 40 to 47, with both ends included. If the
 byte string has a second byte, it will carry information about bits
 48 to 55, and so on. Within each byte, bits are assigned from least
 to most significant. After the byte string, the offset is modified
 by the number of bytes in the byte string multiplied by 8. Bytes
 with no bits set (zero bytes) at the end of the byte string are never
 generated. If they occur at the end of the array, the zero bytes are
 simply omitted; if they occur at the end of a byte string preceding
 an integer, the zero bytes are removed and the integer is adjusted
 upwards by the number of zero bytes that were removed. An example
 follows.

 The following example shows the encoding of an ’alarm-state’ leaf
 representation node instance with the ’critical’ (position 2),
 ’warning’ (position 8), and ’indeterminate’ (position 128) flags set.

 typedef alarm-state {
 type bits {

 bit unknown;
 bit under-repair;
 bit critical;
 bit major;
 bit minor;
 bit warning {
 position 8;
 }
 bit indeterminate {
 position 128;
 }
 }
 }

 leaf alarm-state {
 type alarm-state;
 }

 CBOR diagnostic notation: [h’0401’, 14, h’01’]

 CBOR encoding: 83 42 0401 0E 41 01

 In a number of cases, the array would only need to have one element
 -- a byte string with a few bytes inside. For this case, it is
 REQUIRED to omit the array element and have only the byte array that
 would have been inside. To illustrate this, let us consider the same
 example YANG definition but this time encoding only ’under-repair’
 and ’critical’ flags. The result would be

 CBOR diagnostic notation: h’06’

 CBOR encoding: 41 06

 Elements in the array MUST be either byte strings that do not end in
 a zero byte or positive unsigned integers, where byte strings and
 integers MUST alternate, i.e., adjacent byte strings or adjacent
 integers are an error. An array with a single byte string MUST
 instead be encoded as just that byte string. An array with a single
 positive integer is an error. Note that a recipient can handle
 trailing zero bytes in the byte strings using the normal rules
 without any issue, so an implementation MAY silently accept them.

 Values of ’bits’ types defined in a ’union’ type MUST be encoded
 using a CBOR text string data item (major type 3) and MUST contain a
 space-separated sequence of names of ’bits’ that are set (see also
 Section 6.12). The encoding MUST be enclosed by the bits CBOR tag,
 as specified in Section 9.3.

 The following example shows the encoding of an ’alarm-state’ leaf
 representation node instance defined using a union type with the
 ’under-repair’ and ’critical’ flags set.

 Definition example:

 leaf alarm-state-2 {
 type union {
 type alarm-state;
 type bits {
 bit extra-flag;
 }
 }
 }

 CBOR diagnostic notation: 43("under-repair critical")

 CBOR encoding: D8 2B 75 756E6465722D72657061697220637269746963616C

6.8. The ’binary’ Type

 Leafs of type binary MUST be encoded using a CBOR byte string data
 item (major type 2).

 The following example shows the encoding of an ’aes128-key’ leaf
 representation node instance set to
 0x1f1ce6a3f42660d888d92a4d8030476e.

 Definition example:

 leaf aes128-key {
 type binary {
 length 16;
 }
 }

 CBOR diagnostic notation: h’1F1CE6A3F42660D888D92A4D8030476E’

 CBOR encoding: 50 1F1CE6A3F42660D888D92A4D8030476E

6.9. The ’leafref’ Type

 Leafs of type leafref MUST be encoded using the rules of the
 representation node referenced by the ’path’ YANG statement.

 The following example shows the encoding of an ’interface-state-ref’
 leaf representation node instance set to "eth1".

 Definition example adapted from [RFC8343]:

 typedef interface-state-ref {
 type leafref {
 path "/interfaces-state/interface/name";
 }
 }

 container interfaces-state {
 list interface {
 key "name";
 leaf name {
 type string;
 }
 leaf-list higher-layer-if {
 type interface-state-ref;
 }
 }
 }

 CBOR diagnostic notation: "eth1"

 CBOR encoding: 64 65746831

6.10. The ’identityref’ Type

 This specification supports two approaches for encoding identityref:
 as a YANG Schema Item iDentifier, as defined in Section 3.2, or as a
 name, as defined in Section 6.8 of [RFC7951]. See Section 6.12 for
 an exceptional case when this representation needs to be tagged.

6.10.1. SIDs as ’identityref’

 When representation nodes of type identityref are implemented using
 SIDs, they MUST be encoded using a CBOR unsigned integer data item
 (major type 0). (Note that, as they are not used in the position of
 CBOR map keys, no delta mechanism is employed for SIDs used for
 identityref.)

 The following example shows the encoding of a ’type’ leaf
 representation node instance set to the value ’iana-if-
 type:ethernetCsmacd’ (SID 1880).

 Definition example adapted from [RFC7317]:

 identity interface-type {

 }

 identity iana-interface-type {
 base interface-type;
 }

 identity ethernetCsmacd {
 base iana-interface-type;
 }

 leaf type {
 type identityref {
 base interface-type;
 }
 }

 CBOR diagnostic notation: 1880

 CBOR encoding: 19 0758

6.10.2. Name as ’identityref’

 Alternatively, an identityref MAY be encoded using a name, as defined
 in Section 3.3. When names are used, identityref MUST be encoded
 using a CBOR text string data item (major type 3). If the identity
 is defined in a different module than the leaf node containing the
 identityref data node, the namespace-qualified form MUST be used.
 Otherwise, both the simple and namespace-qualified forms are
 permitted. Names and namespaces are defined in Section 3.3.

 The following example shows the encoding of the identity ’iana-if-
 type:ethernetCsmacd’ using its namespace-qualified name. This
 example is described in Section 6.10.1.

 CBOR diagnostic notation: "iana-if-type:ethernetCsmacd"

 CBOR encoding: 78 1B
 69616E612D69662D747970653A65746865726E657443736D616364

6.11. The ’empty’ Type

 Leafs of type empty MUST be encoded using the CBOR null value (major
 type 7, additional information 22).

 The following example shows the encoding of an ’is-router’ leaf
 representation node instance when present.

 Definition example adapted from [RFC8344]:

 leaf is-router {
 type empty;
 }

 CBOR diagnostic notation: null

 CBOR encoding: F6

6.12. The ’union’ Type

 Leafs of type union MUST be encoded using the rules associated with
 one of the types listed. When used in a union, the following YANG
 datatypes are enclosed by a CBOR tag to avoid confusion between
 different YANG datatypes encoded using the same CBOR major type.

 * bits

 * enumeration

 * identityref

 * instance-identifier

 See Section 9.3 for the assigned value of these CBOR tags.

 As mentioned in Sections 6.6 and in 6.7, ’enumeration’ and ’bits’ are
 encoded as a CBOR text string data item (major type 3) when defined
 within a ’union’ type. (This adds considerable complexity but is
 necessary because of an idiosyncrasy of the YANG data model for
 unions; the work-around allows compatibility to be maintained with
 the encoding of overlapping unions in XML and JSON. See also
 Section 9.12 of [RFC7950].)

 The following example shows the encoding of an ’ip-address’ leaf
 representation node instance when set to "2001:db8:a0b:12f0::1".

 Definition example adapted from [RFC6991]:

 typedef ipv4-address {
 type string {
 pattern
 ’(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}’
 + ’([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])’
 + ’(%[\p{N}\p{L}]+)?’;
 }
 }

 typedef ipv6-address {
 type string {
 pattern ’((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}’
 + ’((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|’
 + ’(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}’
 + ’(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))’
 + ’(%[\p{N}\p{L}]+)?’;
 pattern ’(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|’
 + ’((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)’
 + ’(%.+)?’;
 }
 }

 typedef ip-address {
 type union {
 type ipv4-address;
 type ipv6-address;
 }
 }

 leaf address {
 type ip-address;
 }

 CBOR diagnostic notation: "2001:db8:a0b:12f0::1"

 CBOR encoding: 74 323030313A6462383A6130623A313266303A3A31

6.13. The ’instance-identifier’ Type

 This specification supports two approaches for encoding an instance-
 identifier: one based on YANG Schema Item iDentifier, as defined in
 Section 3.2, and one based on names, as defined in Section 3.3. See
 Section 6.12 for an exceptional case when this representation needs
 to be tagged.

6.13.1. SIDs as ’instance-identifier’

 SIDs uniquely identify a schema node. In the case of a single
 instance schema node, i.e., a schema node defined at the root of a
 YANG module or submodule or schema nodes defined within a container,
 the SID is sufficient to identify this instance (representation
 node). (Note that no delta mechanism is employed for SIDs used for
 identityref, see Section 6.10.1.)

 In the case of a representation node that is an entry of a YANG list,

 a SID is combined with the list key(s) to identify each instance
 within the YANG list(s).

 Instance-identifiers of single instance schema nodes MUST be encoded
 using a CBOR unsigned integer data item (major type 0) and set to the
 targeted schema node SID.

 Instance-identifiers of representation node entries of a YANG list
 MUST be encoded using a CBOR array data item (major type 4)
 containing the following entries:

 * The first entry MUST be encoded as a CBOR unsigned integer data
 item (major type 0) and set to the targeted schema node SID.

 * The following entries MUST contain the value of each key required
 to identify the instance of the targeted schema node. These keys
 MUST be ordered as defined in the ’key’ YANG statement, starting
 from the top-level list, and followed by each subordinate list(s).

 Examples within this section assume the definition of a schema node
 of type ’instance-identifier’:

 Definition example adapted from [RFC7950]:

 container system {
 ...
 leaf reporting-entity {
 type instance-identifier;
 }

 First example:

 The following example shows the encoding of the ’reporting-entity’
 value referencing data node instance "/system/contact" (SID 1741).

 Definition example adapted from [RFC7317]:

 container system {

 leaf contact {
 type string;
 }

 leaf hostname {
 type inet:domain-name;
 }
 }

 CBOR diagnostic notation: 1741

 CBOR encoding: 19 06CD

 Second example:

 This example aims to show how a representation node entry of a YANG
 list is identified. It uses a somewhat arbitrarily modified YANG
 module version from [RFC7317] by adding country to the leafs and keys
 of authorized-key.

 The following example shows the encoding of the ’reporting-entity’
 value referencing list instance "/system/authentication/user/
 authorized-key/key-data" (which is assumed to have SID 1734) for
 username "bob" and authorized-key with name "admin" and country
 "france".

 list user {
 key name;

 leaf name {
 type string;
 }

 leaf password {
 type ianach:crypt-hash;
 }

 list authorized-key {
 key "name country";

 leaf country {
 type string;
 }

 leaf name {
 type string;
 }

 leaf algorithm {
 type string;
 }

 leaf key-data {
 type binary;
 }
 }
 }

 CBOR diagnostic notation: [1734, "bob", "admin", "france"]

 CBOR encoding:

 84 # array(4)
 19 06C6 # unsigned(1734)
 63 # text(3)
 626F62 # "bob"
 65 # text(5)
 61646D696E # "admin"
 66 # text(6)
 6672616E6365 # "france"

 Third example:

 The following example shows the encoding of the ’reporting-entity’
 value referencing the list instance "/system/authentication/user"
 (SID 1730), corresponding to username "jack".

 CBOR diagnostic notation: [1730, "jack"]

 CBOR encoding:

 82 # array(2)
 19 06C2 # unsigned(1730)
 64 # text(4)
 6A61636B # "jack"

6.13.2. Names as ’instance-identifier’

 An ’instance-identifier’ value is encoded as a text string that is
 analogous to the lexical representation in XML encoding; see
 Section 9.13.2 of [RFC7950]. However, the encoding of namespaces in
 instance-identifier values follows the rules stated in Section 3.3,
 namely:

 * The leftmost (top-level) data node name is always in the
 namespace-qualified form.

 * Any subsequent data node name is in the namespace-qualified form
 if the node is defined in a module other than its parent node;
 otherwise, the simple form is used. This rule also holds for node
 names appearing in predicates.

 For example,

 /ietf-interfaces:interfaces/interface[name=’eth0’]/ietf-ip:ipv4/ip

 is a valid instance-identifier value because the data nodes
 "interfaces", "interface", and "name" are defined in the module
 "ietf-interfaces", whereas "ipv4" and "ip" are defined in "ietf-ip".

 The resulting XML Path Language (XPath) MUST be encoded using a CBOR
 text string data item (major type 3).

 First example:

 This example is described in Section 6.13.1.

 CBOR diagnostic notation: "/ietf-system:system/contact"

 CBOR encoding:

 78 1B 2F696574662D73797374656D3A73797374656D2F636F6E74616374

 Second example:

 This example is described in Section 6.13.1.

 CBOR diagnostic notation (the line break is inserted for exposition
 only):

 "/ietf-system:system/authentication/user[name=’bob’]/
 authorized-key[name=’admin’][country=’france’]/key-data"

 CBOR encoding:

 78 6B
 2F696574662D73797374656D3A73797374656D2F61757468656E74696361
 74696F6E2F757365725B6E616D653D27626F62275D2F617574686F72697A
 65642D6B65795B6E616D653D2761646D696E275D5B636F756E7472793D27
 6672616E6365275D2F6B65792D64617461

 Third example:

 This example is described in Section 6.13.1.

 CBOR diagnostic notation:

 "/ietf-system:system/authentication/user[name=’jack’]"

 CBOR encoding:

 78 34 # text(52)
 2F696574662D73797374656D3A73797374656D2F61757468656E74696361
 74696F6E2F757365725B6E616D653D276A61636B275D

7. Content-Types

 This specification defines the media type application/yang-data+cbor,
 which can be used without parameters or with the id parameter set to
 either name or sid.

 This media type represents a YANG-CBOR document containing a
 representation tree. If the media type parameter id is present,
 depending on its value, each representation node is identified by its
 associated namespace-qualified name, as defined in Section 3.3
 (id=name), or by its associated YANG SID (represented, e.g., in CBOR
 map keys as a SID delta or via tag number 47), as defined in
 Section 3.2 (id=sid), respectively. If no id parameter is given,
 both forms may be present.

 The format of an application/yang-data+cbor representation is that of
 a CBOR map, mapping names, and/or SIDs (as defined above) into
 instance values (using the rules defined in Section 4).

 It is not foreseen at this point that the valid set of values for the
 id parameter will extend beyond name, sid, or being unset; if that
 does happen, any new value is foreseen to be of the form
 [a-z][a-z0-9]*(-[a-z0-9]+)*.

 In summary, this document defines three content-types, which are
 intended for use by different classes of applications:

 * application/yang-data+cbor; id=sid -- for use by applications that
 need to be frugal with encoding space and text string processing
 (e.g., applications running on constrained nodes [RFC7228] or
 applications with particular performance requirements);

 * application/yang-data+cbor; id=name -- for use by applications
 that do not want to engage in SID management and that have ample
 resources to manage text-string-based item identifiers (e.g.,
 applications that directly want to substitute application/
 yang.data+json with a more efficient representation without any
 other changes); and

 * application/yang-data+cbor -- for use by more complex applications
 that can benefit from the increased efficiency of SID identifiers
 but also need to integrate databases of YANG modules before SID
 mappings are defined for them.

 All three content-types are based on the same representation
 mechanisms, parts of which are simply not used in the first and
 second cases.

 How the use of one of these content-types is selected in a transfer
 protocol is outside the scope of this specification. The last
 paragraph of Section 5.2 of [RFC8040] discusses how to indicate and
 request the usage of specific content-types in RESTCONF. Similar
 mechanisms are available in the Constrained Application Protocol
 (CoAP) [RFC7252] using the Content-Format and Accept Options;
 [CORE-COMI] demonstrates specifics on how Content-Format may be used
 to indicate the id=sid case.

8. Security Considerations

 The security considerations of [RFC8949] and [RFC7950] apply.

 This document defines an alternative encoding for data modeled in the
 YANG data modeling language. As such, this encoding does not
 contribute any new security issues in addition to those identified
 for the specific protocol or context for which it is used.

 To minimize security risks, software on the receiving side SHOULD
 reject all messages that do not comply to the rules of this document
 and reply with an appropriate error message to the sender.

 For instance, when the id parameter to the media type is used, it is
 important to properly reject identifiers of the other type to avoid
 scenarios where different implementations interpret a given content
 in different ways.

 When SIDs are in use, the interpretation of encoded data not only
 relies on having the right YANG modules but also on having the right
 SID mapping information. Management and evolution of that mapping
 information therefore requires the same care as the management and
 evolution of the YANG modules themselves. The procedures in
 [CORE-SID] are being defined with this in mind.

9. IANA Considerations

9.1. Media Types Registry

 IANA has added the following media type to the "Media Types" registry
 [IANA.media-types].

 +================+============================+===========+

 | Name | Template | Reference |
 +================+============================+===========+
 | yang-data+cbor | application/yang-data+cbor | RFC 9254 |
 +----------------+----------------------------+-----------+

 Table 2: Media Types Registry

 Type name: application

 Subtype name: yang-data+cbor

 Required parameters: N/A

 Optional parameters: id (see Section 7 of RFC 9254)

 Encoding considerations: binary (CBOR)

 Security considerations: see Section 8 of RFC 9254

 Interoperability considerations: N/A

 Published specification: RFC 9254

 Applications that use this media type: applications that need a
 concise and efficient representation of YANG-modeled data

 Fragment identifier considerations: The syntax and semantics of
 fragment identifiers specified for "application/yang-data+cbor" is
 as specified for "application/cbor". (At publication of this
 document, there is no fragment identification syntax defined for
 "application/cbor".)

 Additional information:

 Magic number(s): N/A

 File extension(s): N/A

 Macintosh file type code(s): N/A

 Person & email address to contact for further information: CORE WG
 mailing list (core@ietf.org) or IETF Applications and Real-Time
 Area (art@ietf.org)

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: CoRE WG

 Change controller: IETF

9.2. CoAP Content-Formats Registry

 IANA has added the following Content-Formats to the "CoAP
 Content-Formats" subregistry, within the "Constrained RESTful
 Environments (CoRE) Parameters" registry [IANA.core-parameters]. The
 registration procedure is "Expert Review" for the 0-255 range and
 "IETF Review" for the 256-9999 range.

 +=====================================+==========+=====+===========+
 | Media Type | Encoding | ID | Reference |
 +=====================================+==========+=====+===========+
 | application/yang-data+cbor | - | 340 | RFC 9254 |
 +-------------------------------------+----------+-----+-----------+
 | application/yang-data+cbor; id=name | - | 341 | RFC 9254 |
 +-------------------------------------+----------+-----+-----------+
 | application/yang-data+cbor; id=sid | - | 140 | RFC 9254 |
 +-------------------------------------+----------+-----+-----------+

 Table 3: CoAP Content-Format Registry

9.3. CBOR Tags Registry

 IANA has allocated the following CBOR tag numbers in the "CBOR Tags"
 registry [IANA.cbor-tags] defined in Section 9.2 of [RFC8949].

 +=====+==================+============================+===========+
 | Tag | Data Item | Semantics | Reference |
 +=====+==================+============================+===========+
 | 43 | text string | YANG bits datatype; see | RFC 9254 |
 | | | Section 6.7. | |
 +-----+------------------+----------------------------+-----------+
 | 44 | text string | YANG enumeration datatype; | RFC 9254 |
 | | | see Section 6.6. | |
 +-----+------------------+----------------------------+-----------+
 | 45 | unsigned integer | YANG identityref datatype; | RFC 9254 |
 | | or text string | see Section 6.10. | |
 +-----+------------------+----------------------------+-----------+
 | 46 | unsigned integer | YANG instance-identifier | RFC 9254 |
 | | or text string | datatype; see | |
 | | or array | Section 6.13. | |
 +-----+------------------+----------------------------+-----------+
 | 47 | unsigned integer | YANG Schema Item | RFC 9254 |
 | | | iDentifier (SID); see | |
 | | | Section 3.2. | |
 +-----+------------------+----------------------------+-----------+

 Table 4: CBOR Tags Registry

10. References

10.1. Normative References

 [IANA.cbor-tags]
 IANA, "Concise Binary Object Representation (CBOR) Tags",
 <https://www.iana.org/assignments/cbor-tags>.

 [IANA.core-parameters]
 IANA, "Constrained RESTful Environments (CoRE)
 Parameters",
 <https://www.iana.org/assignments/core-parameters/>.

 [IANA.media-types]
 IANA, "Media Types",
 <https://www.iana.org/assignments/media-types/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 RFC 7951, DOI 10.17487/RFC7951, August 2016,
 <https://www.rfc-editor.org/info/rfc7951>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

 [RFC8791] Bierman, A., BjÃ¶rklund, M., and K. Watsen, "YANG Data
 Structure Extensions", RFC 8791, DOI 10.17487/RFC8791,
 June 2020, <https://www.rfc-editor.org/info/rfc8791>.

 [RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", STD 94, RFC 8949,
 DOI 10.17487/RFC8949, December 2020,
 <https://www.rfc-editor.org/info/rfc8949>.

10.2. Informative References

 [CORE-COMI]
 Veillette, M., Ed., van der Stok, P., Ed., Pelov, A.,
 Bierman, A., and I. Petrov, Ed., "CoAP Management
 Interface (CORECONF)", Work in Progress, Internet-Draft,
 draft-ietf-core-comi-11, 17 January 2021,
 <https://datatracker.ietf.org/doc/html/draft-ietf-core-
 comi-11>.

 [CORE-SID] Veillette, M., Ed., Pelov, A., Ed., Petrov, I., Ed.,
 Bormann, C., and M. Richardson, "YANG Schema Item
 iDentifier (YANG SID)", Work in Progress, Internet-Draft,
 draft-ietf-core-sid-18, 18 November 2021,
 <https://datatracker.ietf.org/doc/html/draft-ietf-core-
 sid-18>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7317] Bierman, A. and M. Bjorklund, "A YANG Data Model for
 System Management", RFC 7317, DOI 10.17487/RFC7317, August
 2014, <https://www.rfc-editor.org/info/rfc7317>.

 [RFC8343] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
 <https://www.rfc-editor.org/info/rfc8343>.

 [RFC8344] Bjorklund, M., "A YANG Data Model for IP Management",
 RFC 8344, DOI 10.17487/RFC8344, March 2018,
 <https://www.rfc-editor.org/info/rfc8344>.

Acknowledgments

 This document has been largely inspired by the extensive work done by
 Andy Bierman and Peter van der Stok on [CORE-COMI]. [RFC7951] has
 also been a critical input to this work. The authors would like to
 thank the authors and contributors of these two documents.

 The authors would also like to acknowledge the review, feedback, and
 comments from Ladislav Lhotka and JÃ¼rgen SchÃ¶nwÃ¤lder and from the
 Document Shepherd Marco Tiloca. Extensive comments helped us further
 improve the document in the IESG review process; the authors would
 like to call out specifically the feedback and guidance by the
 responsible AD Francesca Palombini and the significant improvements
 suggested by IESG members Benjamin Kaduk and Rob Wilton.

Authors’ Addresses

 Michel Veillette (editor)
 Trilliant Networks Inc.
 610 Rue du Luxembourg
 Granby Quebec J2J 2V2
 Canada
 Email: michel.veillette@trilliantinc.com

 Ivaylo Petrov (editor)
 Google Switzerland GmbH
 Brandschenkestrasse 110
 CH-8002 Zurich
 Switzerland
 Email: ivaylopetrov@google.com

 Alexander Pelov
 Acklio
 1137A avenue des Champs Blancs
 35510 Cesson-Sevigne Cedex
 France
 Email: a@ackl.io

 Carsten Bormann
 UniversitÃ¤t Bremen TZI
 Postfach 330440
 D-28359 Bremen
 Germany
 Phone: +49-421-218-63921
 Email: cabo@tzi.org

 Michael Richardson
 Sandelman Software Works
 Canada
 Email: mcr+ietf@sandelman.ca

