
ï»¿

Internet Engineering Task Force (IETF) R. Austein

Request for Comments: 9286 Arrcus, Inc.

Obsoletes: 6486 G. Huston

Category: Standards Track APNIC

ISSN: 2070-1721 S. Kent

 Independent

 M. Lepinski

 New College Florida

 June 2022

 Manifests for the Resource Public Key Infrastructure (RPKI)

Abstract

 This document defines a "manifest" for use in the Resource Public Key

 Infrastructure (RPKI). A manifest is a signed object (file) that

 contains a listing of all the signed objects (files) in the

 repository publication point (directory) associated with an authority

 responsible for publishing in the repository. For each certificate,

 Certificate Revocation List (CRL), or other type of signed objects

 issued by the authority that are published at this repository

 publication point, the manifest contains both the name of the file

 containing the object and a hash of the file content. Manifests are

 intended to enable a relying party (RP) to detect certain forms of

 attacks against a repository. Specifically, if an RP checks a

 manifest’s contents against the signed objects retrieved from a

 repository publication point, then the RP can detect replay attacks,

 and unauthorized in-flight modification or deletion of signed

 objects. This document obsoletes RFC 6486.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force

 (IETF). It represents the consensus of the IETF community. It has

 received public review and has been approved for publication by the

 Internet Engineering Steering Group (IESG). Further information on

 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,

 and how to provide feedback on it may be obtained at

 https://www.rfc-editor.org/info/rfc9286.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Revised BSD License text as described in Section 4.e of the

 Trust Legal Provisions and are provided without warranty as described

 in the Revised BSD License.

Table of Contents

 1. Introduction

 1.1. Requirements Language

 2. Manifest Scope

 3. Manifest Signing

 4. Manifest Definition

 4.1. eContentType

 4.2. eContent

 4.2.1. Manifest

 4.2.2. Names in FileAndHash Objects

 4.3. Content-Type Attribute

 4.4. Manifest Validation

 5. Manifest Generation

 5.1. Manifest Generation Procedure

 5.2. Considerations for Manifest Generation

 6. Relying Party Processing of Manifests

 6.1. Manifest Processing Overview

 6.2. Acquiring a Manifest for a CA

 6.3. Detecting Stale and/or Prematurely Issued Manifests

 6.4. Acquiring Files Referenced by a Manifest

 6.5. Matching File Names and Hashes

 6.6. Failed Fetches

 7. Publication Repositories

 8. Security Considerations

 9. IANA Considerations

 10. References

 10.1. Normative References

 10.2. Informative References

 Appendix A. ASN.1 Module

 Appendix B. Changes since RFC 6486

 Acknowledgements

 Authors’ Addresses

1. Introduction

 The Resource Public Key Infrastructure (RPKI) [RFC6480] makes use of

 a distributed repository system [RFC6481] to make available a variety

 of objects needed by relying parties (RPs). Because all of the

 objects stored in the repository system are digitally signed by the

 entities that created them, attacks that modify these published

 objects are detectable by RPs. However, digital signatures alone

 provide no protection against attacks that substitute "stale"

 versions of signed objects (i.e., objects that were valid and have

 not yet expired, but have since been superseded), or in-flight

 attacks that remove an object that should be present in the

 repository. To assist in the detection of such attacks, RPKI

 repository systems make use of a signed object called a "manifest".

 A manifest is a signed object that enumerates all the signed objects

 (files) in the repository publication point (directory) that are

 associated with an authority responsible for publishing at that

 publication point. Each manifest contains both the name of the file

 containing the object and a hash of the file content, for every

 signed object issued by an authority that is published at the

 authority’s repository publication point. A manifest is intended to

 allow an RP to detect unauthorized object removal or the substitution

 of stale versions of objects at a publication point. A manifest also

 is intended to allow an RP to detect similar outcomes that may result

 from an on-path attack during the retrieval of objects from the

 repository. Manifests are intended to be used in Certification

 Authority (CA) publication points in repositories (directories

 containing files that are subordinate certificates and Certificate

 Revocation Lists (CRLs) issued by this CA and other signed objects

 that are verified by End-Entity (EE) certificates issued by this CA).

 Manifests are modeled on CRLs, as the issues involved in detecting

 stale manifests and potential attacks using manifest replays, etc.,

 are similar to those for CRLs. The syntax of the manifest payload

 differs from CRLs, since RPKI repositories contain objects not

 covered by CRLs, e.g., digitally signed objects, such as Route Origin

 Authorizations (ROAs) [RFC6482].

 This document obsoletes [RFC6486].

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in

 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

2. Manifest Scope

 A manifest associated with a CA’s repository publication point

 contains a list of:

 * the set of (non-expired, non-revoked) certificates issued and

 published by this CA,

 * the most recent CRL issued by this CA, and

 * all published signed objects that are verifiable using EE

 certificates [RFC6487] issued by this CA (other than the manifest

 itself).

 Every RPKI signed object includes, in the Cryptographic Message

 Syntax (CMS) [RFC5652] wrapper of the object, the EE certificate used

 to verify it [RFC6488]. Thus, there is no requirement to separately

 publish that EE certificate at the CA’s repository publication point.

 Where multiple CA instances share a common publication point, as can

 occur when a CA performs a key-rollover operation [RFC6489], the

 repository publication point will contain multiple manifests. In

 this case, each manifest describes only the collection of published

 products of its associated CA instance.

3. Manifest Signing

 A CA’s manifest is verified using an EE certificate. The

 SubjectInfoAccess (SIA) field of this EE certificate contains the

 accessMethod Object Identifier (OID) of id-ad-signedObject.

 The CA MUST sign only one manifest with each generated private key

 and MUST generate a new key pair for each new version of the

 manifest. An associated EE certificate used in this fashion is

 termed a "one-time-use" EE certificate (see Section 3 of [RFC6487]).

4. Manifest Definition

 A manifest is an RPKI signed object, as specified in [RFC6488]. The

 RPKI signed object template requires specification of the following

 data elements in the context of the manifest structure.

4.1. eContentType

 The eContentType for a manifest is defined as id-ct-rpkiManifest and

 has the numerical OID of 1.2.840.113549.1.9.16.1.26.

 id-smime OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)

 rsadsi(113549) pkcs(1) pkcs9(9) 16 }

 id-ct OBJECT IDENTIFIER ::= { id-smime 1 }

 id-ct-rpkiManifest OBJECT IDENTIFIER ::= { id-ct 26 }

4.2. eContent

 The content of a manifest is ASN.1 encoded using the Distinguished

 Encoding Rules (DER) [X.690]. The content of a manifest is defined

 as follows:

 Manifest ::= SEQUENCE {

 version [0] INTEGER DEFAULT 0,

 manifestNumber INTEGER (0..MAX),

 thisUpdate GeneralizedTime,

 nextUpdate GeneralizedTime,

 fileHashAlg OBJECT IDENTIFIER,

 fileList SEQUENCE SIZE (0..MAX) OF FileAndHash

 }

 FileAndHash ::= SEQUENCE {

 file IA5String,

 hash BIT STRING

 }

4.2.1. Manifest

 The manifestNumber, thisUpdate, and nextUpdate fields are modeled

 after the corresponding fields in X.509 CRLs (see [RFC5280]).

 Analogous to CRLs, a manifest is nominally current until the time

 specified in nextUpdate or until a manifest is issued with a greater

 manifest number, whichever comes first.

 Because a "one-time-use" EE certificate is employed to verify a

 manifest, the EE certificate MUST be issued with a validity period

 that coincides with the interval from thisUpdate to nextUpdate in the

 manifest, to prevent needless growth of the CA’s CRL.

 The data elements of the manifest structure are defined as follows:

 version:

 The version number of this version of the manifest specification

 MUST be 0.

 manifestNumber:

 This field is an integer that is incremented (by 1) each time a

 new manifest is issued for a given publication point. This field

 allows an RP to detect gaps in a sequence of published manifests.

 As the manifest is modeled on the CRL specification, the

 manifestNumber is analogous to the CRLNumber, and the guidance in

 [RFC5280] for CRLNumber values is appropriate as to the range of

 number values that can be used for the manifestNumber. Manifest

 numbers can be expected to contain long integers. Manifest

 verifiers MUST be able to process number values up to 20 octets.

 Conforming manifest issuers MUST NOT use number values longer than

 20 octets. The issuer MUST increase the value of this field

 monotonically for each newly generated manifest. Each RP MUST

 verify that a purported "new" manifest contains a higher

 manifestNumber than previously validated manifests. If the

 purported "new" manifest contains a manifestNumber value equal to

 or lower than manifestNumber values of previously validated

 manifests, the RP SHOULD use locally cached versions of objects,

 as described in Section 6.6.

 thisUpdate:

 This field contains the time when the manifest was created. This

 field has the same format constraints as specified in [RFC5280]

 for the CRL field of the same name. The issuer MUST ensure that

 the value of this field is more recent than any previously

 generated manifest. Each RP MUST verify that this field value is

 greater (more recent) than the most recent manifest it has

 validated. If this field in a purported "new" manifest is smaller

 (less recent) than previously validated manifests, the RP SHOULD

 use locally cached versions of objects, as described in

 Section 6.6.

 nextUpdate:

 This field contains the time at which the next scheduled manifest

 will be issued. The value of nextUpdate MUST be later than the

 value of thisUpdate. The specification of the GeneralizedTime

 value is the same as required for the thisUpdate field.

 If the authority alters any of the items that it has published in

 the repository publication point, then the authority MUST issue a

 new manifest. Even if no changes are made to objects at a

 publication point, a new manifest MUST be issued before the

 nextUpdate time. Each manifest encompasses a CRL, and the

 nextUpdate field of the manifest SHOULD match that of the CRL’s

 nextUpdate field, as the manifest will be reissued when a new CRL

 is published. When a new manifest is issued before the time

 specified in nextUpdate of the current manifest, the CA MUST also

 issue a new CRL that revokes the EE certificate corresponding to

 the old manifest.

 fileHashAlg:

 This field contains the OID of the hash algorithm used to hash the

 files that the authority has placed into the repository. The hash

 algorithm used MUST conform to the RPKI Algorithms and Key Size

 Profile specification [RFC7935].

 fileList:

 This field is a sequence of FileAndHash objects. There is one

 FileAndHash entry for each currently valid signed object that has

 been published by the authority (at this publication point). Each

 FileAndHash is an ordered pair consisting of the name of the file

 in the repository publication point (directory) that contains the

 object in question and a hash of the file’s contents.

4.2.2. Names in FileAndHash Objects

 Names that appear in the fileList MUST consist of one or more

 characters chosen from the set a-z, A-Z, 0-9, - (HYPHEN), or

 _ (UNDERSCORE), followed by a single . (DOT), followed by a three-

 letter extension. The extension MUST be one of those enumerated in

 the "RPKI Repository Name Schemes" registry maintained by IANA

 [IANA-NAMING].

 As an example, ’vixxBTS_TVXQ-2pmGOT7.cer’ is a valid file name.

 The example above contains a mix of uppercase and lowercase

 characters in the file name. CAs and RPs MUST be able to perform

 filesystem operations in a case-sensitive, case-preserving manner.

4.3. Content-Type Attribute

 The mandatory content-type attribute MUST have its attrValues field

 set to the same OID as eContentType. This OID is id-ct-rpkiManifest

 and has the numerical value of 1.2.840.113549.1.9.16.1.26.

4.4. Manifest Validation

 To determine whether a manifest is valid, the RP MUST perform the

 following checks in addition to those specified in [RFC6488]:

 1. The eContentType in the EncapsulatedContentInfo is id-ad-

 rpkiManifest (OID 1.2.840.113549.1.9.16.1.26).

 2. The version of the rpkiManifest is 0.

 3. In the rpkiManifest, thisUpdate precedes nextUpdate.

 Note: Although the thisUpdate and nextUpdate fields in the manifest

 eContent MUST match the corresponding fields in the CRL associated

 with the manifest, RPs MUST NOT reject a manifest solely because

 these fields are not identical.

 If the above procedure indicates that the manifest is invalid, then

 the manifest MUST be discarded and treated as though no manifest were

 present.

5. Manifest Generation

5.1. Manifest Generation Procedure

 For a CA publication point in the RPKI repository system, a CA MUST

 perform the following steps to generate a manifest:

 1. Generate a new key pair for use in a "one-time-use" EE

 certificate.

 2. Issue an EE certificate for this key pair. The CA MUST revoke

 the EE certificate used for the manifest being replaced.

 This EE certificate MUST have an SIA extension access description

 field with an accessMethod OID value of id-ad-signedObject, where

 the associated accessLocation references the publication point of

 the manifest as an object URL. (RPs are required to verify both

 of these syntactic constraints.)

 This EE certificate MUST describe its Internet Number Resources

 (INRs) using the "inherit" attribute, rather than an explicit

 description of a resource set (see [RFC3779]). (RPs are required

 to verify this.)

 The validity interval of the EE certificate MUST exactly match

 the thisUpdate and nextUpdate times specified in the manifest’s

 eContent. (An RP MUST NOT consider misalignment of the validity

 interval in and of itself to be an error.)

 3. The EE certificate MUST NOT be published in the authority’s

 repository publication point.

 4. Construct the manifest content.

 The manifest content is described in Section 4.2.1. The

 manifest’s fileList includes the file name and hash pair for each

 object issued by this CA that has been published at this

 repository publication point (directory). The collection of

 objects to be included in the manifest includes all certificates

 issued by this CA that are published at the CA’s repository

 publication point, the most recent CRL issued by the CA, and all

 objects verified by EE certificates that were issued by this CA

 that are published at this repository publication point.

 (Sections 6.1 through 6.5 describe the checks that an RP MUST

 perform in support of the manifest content noted here.)

 Note that the manifest does not include a self reference (i.e.,

 its own file name and hash), since it would be impossible to

 compute the hash of the manifest itself prior to it being signed.

 5. Encapsulate the manifest content using the CMS SignedData content

 type (as specified in Section 4), sign the manifest using the

 private key corresponding to the subject key contained in the EE

 certificate, and publish the manifest in the repository system

 publication point that is described by the manifest. (RPs are

 required to verify the CMS signature.)

 6. Because the key pair is to be used only once, the private key

 associated with this key pair MUST now be destroyed.

5.2. Considerations for Manifest Generation

 A new manifest MUST be issued and published before the nextUpdate

 time.

 An authority MUST issue a new manifest in conjunction with the

 finalization of changes made to objects in the publication point. If

 any named objects in the publication point are replaced, the

 authority MUST ensure that the file hash for each replaced object is

 updated accordingly in the new manifest. Additionally, the authority

 MUST revoke the certificate associated with each replaced object

 (other than a CRL), if it is not expired. An authority MAY perform a

 number of object operations on a publication repository within the

 scope of a repository change before issuing a single manifest that

 covers all the operations within the scope of this change.

 Repository operators MUST implement some form of repository update

 procedure that mitigates, to the extent possible, the risk that RPs

 that are performing retrieval operations on the repository are

 exposed to inconsistent, transient, intermediate states during

 updates to the repository publication point (directory) and the

 associated manifest.

 Since the manifest object URL is included in the SIA of issued

 certificates, a new manifest MUST NOT invalidate the manifest object

 URL of previously issued certificates. This implies that the

 manifest’s publication name in the repository, in the form of an

 object URL, is unchanged across manifest generation cycles.

 When a CA entity is performing a key rollover, the entity MAY choose

 to have two CA instances simultaneously publishing into the same

 repository publication point. In this case, there will be one

 manifest associated with each active CA instance that is publishing

 into the common repository publication point (directory).

6. Relying Party Processing of Manifests

 Each RP MUST use the current manifest of a CA to control addition of

 listed files to the set of signed objects the RP employs for

 validating basic RPKI objects: certificates, ROAs, and CRLs. Any

 files not listed on the manifest MUST NOT be used for validation of

 these objects. However, files not listed on a manifest MAY be

 employed to validate other signed objects, if the profile of the

 object type explicitly states that such behavior is allowed (or

 required). Note that relying on files not listed in a manifest may

 allow an attacker to effect substitution attacks against such

 objects.

 As noted earlier, manifests are designed to allow an RP to detect

 manipulation of repository data, errors by a CA or repository

 manager, and/or active attacks on the communication channel between

 an RP and a repository. Unless all of the files enumerated in a

 manifest can be obtained by an RP during a fetch operation, the fetch

 is considered to have failed and the RP MUST retry the fetch later.

 [RFC6480] suggests (but does not mandate) that the RPKI model employ

 fetches that are incremental, e.g., an RP transfers files from a

 publication point only if they are new/changed since the previous,

 successful fetch represented in the RP’s local cache. This document

 avoids language that relies on details of the underlying file

 transfer mechanism employed by an RP and a publication point to

 effect this operation. Thus, the term "fetch" refers to an operation

 that attempts to acquire the full set of files at a publication

 point, consistent with the id-ad-rpkiManifest URI extracted from a CA

 certificate’s SIA (see below).

 If a fetch fails, it is assumed that a subsequent fetch will resolve

 problems encountered during the fetch. Until such time as a

 successful fetch is executed, an RP SHOULD use cached data from a

 previous, successful fetch. This response is intended to prevent an

 RP from misinterpreting data associated with a publication point and

 thus possibly treating invalid routes as valid, or vice versa.

 The processing described below is designed to cause all RPs with

 access to the same local cache and RPKI repository data to acquire

 the same set of validated repository files. It does not ensure that

 the RPs will achieve the same results with regard to validation of

 RPKI data, since that depends on how each RP resolves any conflicts

 that may arise in processing the retrieved files. Moreover, in

 operation, different RPs will access repositories at different times,

 and some RPs may experience local cache failures, so there is no

 guarantee that all RPs will achieve the same results with regard to

 acquisition or validation of RPKI data.

 Note also that there is a "chicken and egg" relationship between the

 manifest and the CRL for a given CA instance. If the EE certificate

 for the current manifest is revoked, i.e., it appears in the current

 CRL, then the CA or publication point manager has made a serious

 error. In this case, the fetch has failed; proceed to Section 6.6.

 Similarly, if the CRL is not listed on a valid, current manifest,

 acquired during a fetch, the fetch has failed; proceed to

 Section 6.6, because the CRL is considered missing.

6.1. Manifest Processing Overview

 For a given publication point, an RP MUST perform a series of tests

 to determine which signed object files at the publication point are

 acceptable. The tests described below (Sections 6.2 through 6.5) are

 to be performed using the manifest identified by the id-ad-

 rpkiManifest URI extracted from a CA certificate’s SIA. All of the

 files referenced by the manifest MUST be located at the publication

 point specified by the id-ad-caRepository URI from the (same) CA

 certificate’s SIA. The manifest and the files it references MUST

 reside at the same publication point. If an RP encounters any files

 that appear on a manifest but do not reside at the same publication

 point as the manifest, the RP MUST treat the fetch as failed, and a

 warning MUST be issued (see Section 6.6 below).

 Note that, during CA key rollover [RFC6489], signed objects for two

 or more different CA instances will appear at the same publication

 point. Manifest processing is to be performed separately for each CA

 instance, guided by the SIA id-ad-rpkiManifest URI in each CA

 certificate.

6.2. Acquiring a Manifest for a CA

 The RP MUST fetch the manifest identified by the SIA id-ad-

 rpkiManifest URI in the CA certificate. If an RP cannot retrieve a

 manifest using this URI or if the manifest is not valid

 (Section 4.4), an RP MUST treat this as a failed fetch; proceed to

 Section 6.6. Otherwise, proceed to Section 6.3.

6.3. Detecting Stale and/or Prematurely Issued Manifests

 The RP MUST check that the current time (translated to UTC) is

 between thisUpdate and nextUpdate. If the current time lies within

 this interval, proceed to Section 6.4. If the current time is

 earlier than thisUpdate, the CA may have made an error or the RP’s

 local notion of time may be in error. The RP MUST treat this as a

 failed fetch; proceed to Section 6.6. If the current time is later

 than nextUpdate, then the manifest is stale; the RP MUST treat this

 as a failed fetch. Proceed to Section 6.6. Otherwise, proceed to

 Section 6.4.

6.4. Acquiring Files Referenced by a Manifest

 The RP MUST acquire all of the files enumerated in the manifest

 (fileList) from the publication point. If there are files listed in

 the manifest that cannot be retrieved from the publication point, the

 RP MUST treat this as a failed fetch. Proceed to Section 6.6.

 Otherwise, proceed to Section 6.5.

6.5. Matching File Names and Hashes

 The RP MUST verify that the hash value of each file listed in the

 manifest matches the value obtained by hashing the file acquired from

 the publication point. If the computed hash value of a file listed

 on the manifest does not match the hash value contained in the

 manifest, then the fetch has failed, and the RP MUST respond

 accordingly. Proceed to Section 6.6.

6.6. Failed Fetches

 If a fetch fails for any of the reasons cited in Sections 6.2 through

 6.5, the RP MUST issue a warning indicating the reason(s) for

 termination of processing with regard to this CA instance. It is

 RECOMMENDED that a human operator be notified of this warning.

 Termination of processing means that the RP SHOULD continue to use

 cached versions of the objects associated with this CA instance,

 until such time as they become stale or they can be replaced by

 objects from a successful fetch. This implies that the RP MUST NOT

 try to acquire and validate subordinate signed objects, e.g.,

 subordinate CA certificates, until the next interval when the RP is

 scheduled to fetch and process data for this CA instance.

7. Publication Repositories

 The RPKI publication system model requires that every publication

 point be associated with one or more CAs and be non-empty. Upon

 creation of the publication point associated with a CA, the CA MUST

 create and publish a manifest as well as a CRL. A CA’s manifest will

 always contain at least one entry, i.e., a CRL issued by the CA

 [RFC6481], corresponding to the scope of this manifest.

 Every published signed object in the RPKI [RFC6488] is published in

 the repository publication point of the CA that issued the EE

 certificate, and is listed in the manifest associated with that CA

 certificate.

8. Security Considerations

 Manifests provide an additional level of protection for RPKI RPs.

 Manifests can assist an RP in determining if a repository object has

 been deleted, occluded, or otherwise removed from view, or if a

 publication of a newer version of an object has been suppressed (and

 an older version of the object has been substituted).

 Manifests cannot repair the effects of such forms of corruption of

 repository retrieval operations. However, a manifest enables an RP

 to determine if a locally maintained copy of a repository is a

 complete and up-to-date copy, even when the repository retrieval

 operation is conducted over an insecure channel. In cases where the

 manifest and the retrieved repository contents differ, the manifest

 can assist in determining which repository objects form the

 difference set in terms of missing, extraneous, or superseded

 objects.

 The signing structure of a manifest and the use of the nextUpdate

 value allow an RP to determine if the manifest itself is the subject

 of attempted alteration. The requirement for every repository

 publication point to contain at least one manifest allows an RP to

 determine if the manifest itself has been occluded from view. Such

 attacks against the manifest are detectable within the time frame of

 the regular schedule of manifest updates. Forms of replay attacks

 within finer-grained time frames are not necessarily detectable by

 the manifest structure.

9. IANA Considerations

 The "RPKI Signed Objects" registry was originally created and

 populated by [RFC6488]. The "RPKI Repository Name Schemes" registry

 was created by [RFC6481] and created four of the initial three-letter

 file name extensions. IANA has updated the reference for the

 "Manifest" row in the "RPKI Signed Objects" registry to point to this

 document.

 IANA has also updated the following entries to refer to this document

 instead of RFC 6486:

 * id-mod-rpkiManifest (60) in the "SMI Security for S/MIME Module

 Identifier (1.2.840.113549.1.9.16.0)" registry

 * id-ct-rpkiManifest (26) in the "SMI Security for S/MIME CMS

 Content Type (1.2.840.113549.1.9.16.1)" registry

 * the "Security considerations" entry in the application media type

 registration for rpki-manifest

 No other actions are required.

10. References

10.1. Normative References

 [IANA-NAMING]

 IANA, "RPKI Repository Name Schemes",

 <https://www.iana.org/assignments/rpki/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

 Housley, R., and W. Polk, "Internet X.509 Public Key

 Infrastructure Certificate and Certificate Revocation List

 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,

 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC6481] Huston, G., Loomans, R., and G. Michaelson, "A Profile for

 Resource Certificate Repository Structure", RFC 6481,

 DOI 10.17487/RFC6481, February 2012,

 <https://www.rfc-editor.org/info/rfc6481>.

 [RFC6482] Lepinski, M., Kent, S., and D. Kong, "A Profile for Route

 Origin Authorizations (ROAs)", RFC 6482,

 DOI 10.17487/RFC6482, February 2012,

 <https://www.rfc-editor.org/info/rfc6482>.

 [RFC6487] Huston, G., Michaelson, G., and R. Loomans, "A Profile for

 X.509 PKIX Resource Certificates", RFC 6487,

 DOI 10.17487/RFC6487, February 2012,

 <https://www.rfc-editor.org/info/rfc6487>.

 [RFC6488] Lepinski, M., Chi, A., and S. Kent, "Signed Object

 Template for the Resource Public Key Infrastructure

 (RPKI)", RFC 6488, DOI 10.17487/RFC6488, February 2012,

 <https://www.rfc-editor.org/info/rfc6488>.

 [RFC7935] Huston, G. and G. Michaelson, Ed., "The Profile for

 Algorithms and Key Sizes for Use in the Resource Public

 Key Infrastructure", RFC 7935, DOI 10.17487/RFC7935,

 August 2016, <https://www.rfc-editor.org/info/rfc7935>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [X.690] International Telecommunication Union, "Information

 technology - ASN.1 encoding rules: Specification of Basic

 Encoding Rules (BER), Canonical Encoding Rules (CER) and

 Distinguished Encoding Rules (DER)", ITU-T Recommendation

 X.690, February 2021,

 <https://www.itu.int/rec/T-REC-X.690-202102-I/en>.

10.2. Informative References

 [RFC3779] Lynn, C., Kent, S., and K. Seo, "X.509 Extensions for IP

 Addresses and AS Identifiers", RFC 3779,

 DOI 10.17487/RFC3779, June 2004,

 <https://www.rfc-editor.org/info/rfc3779>.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,

 RFC 5652, DOI 10.17487/RFC5652, September 2009,

 <https://www.rfc-editor.org/info/rfc5652>.

 [RFC6480] Lepinski, M. and S. Kent, "An Infrastructure to Support

 Secure Internet Routing", RFC 6480, DOI 10.17487/RFC6480,

 February 2012, <https://www.rfc-editor.org/info/rfc6480>.

 [RFC6486] Austein, R., Huston, G., Kent, S., and M. Lepinski,

 "Manifests for the Resource Public Key Infrastructure

 (RPKI)", RFC 6486, DOI 10.17487/RFC6486, February 2012,

 <https://www.rfc-editor.org/info/rfc6486>.

 [RFC6489] Huston, G., Michaelson, G., and S. Kent, "Certification

 Authority (CA) Key Rollover in the Resource Public Key

 Infrastructure (RPKI)", BCP 174, RFC 6489,

 DOI 10.17487/RFC6489, February 2012,

 <https://www.rfc-editor.org/info/rfc6489>.

Appendix A. ASN.1 Module

 RPKIManifest { iso(1) member-body(2) us(840) rsadsi(113549)

 pkcs(1) pkcs9(9) smime(16) mod(0) 60 }

 DEFINITIONS EXPLICIT TAGS ::=

 BEGIN

 -- EXPORTS ALL --

 IMPORTS

 CONTENT-TYPE

 FROM CryptographicMessageSyntax-2010 -- in RFC 6268

 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)

 pkcs-9(9) smime(16) modules(0) id-mod-cms-2009(58) } ;

 -- Manifest Content Type

 ct-rpkiManifest CONTENT-TYPE ::=

 { TYPE Manifest IDENTIFIED BY id-ct-rpkiManifest }

 id-smime OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 16 }

 id-ct OBJECT IDENTIFIER ::= { id-smime 1 }

 id-ct-rpkiManifest OBJECT IDENTIFIER ::= { id-ct 26 }

 Manifest ::= SEQUENCE {

 version [0] INTEGER DEFAULT 0,

 manifestNumber INTEGER (0..MAX),

 thisUpdate GeneralizedTime,

 nextUpdate GeneralizedTime,

 fileHashAlg OBJECT IDENTIFIER,

 fileList SEQUENCE SIZE (0..MAX) OF FileAndHash

 }

 FileAndHash ::= SEQUENCE {

 file IA5String,

 hash BIT STRING

 }

 END

Appendix B. Changes since RFC 6486

 In 2019, it came to light that multiple RP implementations were in a

 vulnerable position, possibly due to perceived ambiguity in the

 original [RFC6486] specification. This document attempts to clarify

 the innovative concept and application of RPKI manifests in light of

 real-world deployment experience in the global Internet routing

 system, to avoid future problematic cases.

 The following list summarizes the changes between RFC 6486 and this

 document:

 * Forbidding "sequential-use" EE certificates and instead mandating

 "one-time-use" EE certificates.

 * Clarifying that manifest EE certificates are to be issued with a

 validity period that coincides with the interval specified in the

 manifest eContent, which coincides with the CRL’s thisUpdate and

 nextUpdate.

 * Clarifying that the manifestNumber is monotonically incremented in

 steps of 1.

 * Recommending that CA issuers include the applicable CRL’s

 nextUpdate with the manifest’s nextUpdate.

 * Constraining the set of valid characters in FileAndHash file

 names.

 * Clarifying that an RP unable to obtain the full set of files

 listed on a manifest is considered to be in a failure state, in

 which case cached data from a previous attempt should be used (if

 available).

 * Clarifying the requirement for a current CRL to be present,

 listed, and verified.

 * Removing the notion of "local policy".

Acknowledgements

 The authors would like to acknowledge the contributions from George

 Michaelson and Randy Bush in the preparation of the manifest

 specification. Additionally, the authors would like to thank Mark

 Reynolds and Christopher Small for assistance in clarifying manifest

 validation and RP behavior. The authors also wish to thank Tim

 Bruijnzeels, Job Snijders, Oleg Muravskiy, Sean Turner, Adianto

 Wibisono, Murray Kucherawy, Francesca Palombini, Roman Danyliw, Lars

 Eggert, Robert Wilton, and Benjamin Kaduk for their helpful review of

 this document.

Authors’ Addresses

 Rob Austein

 Arrcus, Inc.

 Email: sra@hactrn.net

 Geoff Huston

 APNIC

 6 Cordelia St

 South Brisbane QLD 4101

 Australia

 Email: gih@apnic.net

 Stephen Kent

 Independent

 Email: kent@alum.mit.edu

 Matt Lepinski

 New College Florida

 5800 Bay Shore Rd.

 Sarasota, FL 34243

 United States of America

 Email: mlepinski@ncf.edu

