
ï»¿

Internet Engineering Task Force (IETF) M. Thomson

Request for Comments: 9292 Mozilla

Category: Standards Track C. A. Wood

ISSN: 2070-1721 Cloudflare

 August 2022

 Binary Representation of HTTP Messages

Abstract

 This document defines a binary format for representing HTTP messages.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force

 (IETF). It represents the consensus of the IETF community. It has

 received public review and has been approved for publication by the

 Internet Engineering Steering Group (IESG). Further information on

 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,

 and how to provide feedback on it may be obtained at

 https://www.rfc-editor.org/info/rfc9292.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Revised BSD License text as described in Section 4.e of the

 Trust Legal Provisions and are provided without warranty as described

 in the Revised BSD License.

Table of Contents

 1. Introduction

 2. Conventions and Definitions

 3. Format

 3.1. Known-Length Messages

 3.2. Indeterminate-Length Messages

 3.3. Framing Indicator

 3.4. Request Control Data

 3.5. Response Control Data

 3.5.1. Informational Status Codes

 3.6. Header and Trailer Field Lines

 3.7. Content

 3.8. Padding and Truncation

 4. Invalid Messages

 5. Examples

 5.1. Request Example

 5.2. Response Example

 6. Notable Differences with HTTP Protocol Messages

 7. "message/bhttp" Media Type

 8. Security Considerations

 9. IANA Considerations

 10. References

 10.1. Normative References

 10.2. Informative References

 Acknowledgments

 Authors’ Addresses

1. Introduction

 This document defines a simple format for representing an HTTP

 message [HTTP], either request or response. This allows for the

 encoding of HTTP messages that can be conveyed outside an HTTP

 protocol. This enables the transformation of entire messages,

 including the application of authenticated encryption.

 The design of this format is informed by the framing structure of

 HTTP/2 [HTTP/2] and HTTP/3 [HTTP/3]. Rules for constructing messages

 rely on the rules defined in HTTP/2, but the format itself is

 distinct; see Section 6.

 This format defines "message/bhttp", a binary alternative to the

 "message/http" content type defined in [HTTP/1.1]. A binary format

 permits more efficient encoding and processing of messages. A binary

 format also reduces exposure to security problems related to

 processing of HTTP messages.

 Two modes for encoding are described:

 * a known-length encoding includes length prefixes for all major

 message components, and

 * an indeterminate-length encoding enables efficient generation of

 messages where lengths are not known when encoding starts.

 This format is designed to convey the semantics of valid HTTP

 messages as simply and efficiently as possible. It is not designed

 to capture all of the details of the encoding of messages from

 specific HTTP versions [HTTP/1.1] [HTTP/2] [HTTP/3]. As such, this

 format is unlikely to be suitable for applications that depend on an

 exact recording of the encoding of messages.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in

 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

 This document uses terminology from HTTP [HTTP] and notation from

 QUIC (Section 1.3 of [QUIC]).

3. Format

 Section 6 of [HTTP] defines the general structure of HTTP messages

 and composes those messages into distinct parts. This format

 describes how those parts are composed into a sequence of bytes. At

 a high level, binary messages are comprised of:

 1. Framing indicator. This format uses a single integer to describe

 framing, which describes whether the message is a request or

 response and how subsequent sections are formatted; see

 Section 3.3.

 2. For a response, zero or more informational responses. Each

 informational response consists of an informational status code

 and header section.

 3. Control data. For a request, this contains the request method

 and target. For a response, this contains the status code.

 4. Header section. This contains zero or more header fields.

 5. Content. This is a sequence of zero or more bytes.

 6. Trailer section. This contains zero or more trailer fields.

 7. Optional padding. Any amount of zero-valued bytes.

 All lengths and numeric values are encoded using the variable-length

 integer encoding from Section 16 of [QUIC]. Integer values do not

 need to be encoded on the minimum number of bytes necessary.

3.1. Known-Length Messages

 A request or response that has a known length at the time of

 construction uses the format shown in Figure 1.

 Known-Length Request {

 Framing Indicator (i) = 0,

 Request Control Data (..),

 Known-Length Field Section (..),

 Known-Length Content (..),

 Known-Length Field Section (..),

 Padding (..),

 }

 Known-Length Response {

 Framing Indicator (i) = 1,

 Known-Length Informational Response (..) ...,

 Final Response Control Data (..),

 Known-Length Field Section (..),

 Known-Length Content (..),

 Known-Length Field Section (..),

 Padding (..),

 }

 Known-Length Field Section {

 Length (i),

 Field Line (..) ...,

 }

 Known-Length Content {

 Content Length (i),

 Content (..),

 }

 Known-Length Informational Response {

 Informational Response Control Data (..),

 Known-Length Field Section (..),

 }

 Figure 1: Known-Length Message

 A known-length request consists of a framing indicator (Section 3.3),

 request control data (Section 3.4), a header section with a length

 prefix, binary content with a length prefix, a trailer section with a

 length prefix, and padding.

 A known-length response contains the same fields, with the exception

 that request control data is replaced by zero or more informational

 responses (Section 3.5.1) followed by response control data

 (Section 3.5).

 For a known-length encoding, the length prefix on field sections and

 content is a variable-length encoding of an integer. This integer is

 the number of bytes in the field section or content, not including

 the length field itself.

 Fields in the header and trailer sections consist of a length-

 prefixed name and length-prefixed value; see Section 3.6.

 The format allows for the message to be truncated before any of the

 length prefixes that precede the field sections or content; see

 Section 3.8.

 The variable-length integer encoding means that there is a limit of

 2^62-1 bytes for each field section and the message content.

3.2. Indeterminate-Length Messages

 A request or response that is constructed without encoding a known

 length for each section uses the format shown in Figure 2:

 Indeterminate-Length Request {

 Framing Indicator (i) = 2,

 Request Control Data (..),

 Indeterminate-Length Field Section (..),

 Indeterminate-Length Content (..),

 Indeterminate-Length Field Section (..),

 Padding (..),

 }

 Indeterminate-Length Response {

 Framing Indicator (i) = 3,

 Indeterminate-Length Informational Response (..) ...,

 Final Response Control Data (..),

 Indeterminate-Length Field Section (..),

 Indeterminate-Length Content (..),

 Indeterminate-Length Field Section (..),

 Padding (..),

 }

 Indeterminate-Length Content {

 Indeterminate-Length Content Chunk (..) ...,

 Content Terminator (i) = 0,

 }

 Indeterminate-Length Content Chunk {

 Chunk Length (i) = 1..,

 Chunk (..),

 }

 Indeterminate-Length Field Section {

 Field Line (..) ...,

 Content Terminator (i) = 0,

 }

 Indeterminate-Length Informational Response {

 Informational Response Control Data (..),

 Indeterminate-Length Field Section (..),

 }

 Figure 2: Indeterminate-Length Message

 An indeterminate-length request consists of a framing indicator

 (Section 3.3), request control data (Section 3.4), a header section

 that is terminated by a zero value, any number of non-zero-length

 chunks of binary content, a zero value, a trailer section that is

 terminated by a zero value, and padding.

 An indeterminate-length response contains the same fields, with the

 exception that request control data is replaced by zero or more

 informational responses (Section 3.5.1) and response control data

 (Section 3.5).

 The indeterminate-length encoding only uses length prefixes for

 content blocks. Multiple length-prefixed portions of content can be

 included, each prefixed by a non-zero Chunk Length integer describing

 the number of bytes in the block. The Chunk Length is encoded as a

 variable-length integer.

 Each Field Line in an Indeterminate-Length Field Section starts with

 a Name Length field. An Indeterminate-Length Field Section ends with

 a Content Terminator field. The zero value of the Content Terminator

 distinguishes it from the Name Length field, which cannot contain a

 value of 0.

 Indeterminate-length messages can be truncated in a way similar to

 that for known-length messages; see Section 3.8.

 Indeterminate-length messages use the same encoding for Field Line as

 known-length messages; see Section 3.6.

3.3. Framing Indicator

 The start of each binary message is a framing indicator that is a

 single integer that describes the structure of the subsequent

 sections. The framing indicator can take just four values:

 * A value of 0 describes a request of known length.

 * A value of 1 describes a response of known length.

 * A value of 2 describes a request of indeterminate length.

 * A value of 3 describes a response of indeterminate length.

 Other values cause the message to be invalid; see Section 4.

3.4. Request Control Data

 The control data for a request message contains the method and

 request target. That information is encoded as an ordered sequence

 of fields: Method, Scheme, Authority, Path. Each of these fields is

 prefixed with a length.

 The values of these fields follow the rules in HTTP/2 (Section 8.3.1

 of [HTTP/2]) that apply to the ":method", ":scheme", ":authority",

 and ":path" pseudo-header fields, respectively. However, where the

 ":authority" pseudo-header field might be omitted in HTTP/2, a zero-

 length value is encoded instead.

 The format of request control data is shown in Figure 3.

 Request Control Data {

 Method Length (i),

 Method (..),

 Scheme Length (i),

 Scheme (..),

 Authority Length (i),

 Authority (..),

 Path Length (i),

 Path (..),

 }

 Figure 3: Format of Request Control Data

3.5. Response Control Data

 The control data for a response message consists of the status code.

 The status code (Section 15 of [HTTP]) is encoded as a variable-

 length integer, not a length-prefixed decimal string.

 The format of final response control data is shown in Figure 4.

 Final Response Control Data {

 Status Code (i) = 200..599,

 }

 Figure 4: Format of Final Response Control Data

3.5.1. Informational Status Codes

 Responses that include informational status codes (see Section 15.2

 of [HTTP]) are encoded by repeating the response control data and

 associated header section until a final status code is encoded; that

 is, a Status Code field with a value from 200 to 599 (inclusive).

 The status code distinguishes between informational and final

 responses.

 The format of the informational response control data is shown in

 Figure 5.

 Informational Response Control Data {

 Status Code (i) = 100..199,

 }

 Figure 5: Format of Informational Response Control Data

 A response message can include any number of informational responses

 that precede a final status code. These convey an informational

 status code and a header block.

 If the response control data includes an informational status code

 (that is, a value between 100 and 199 inclusive), the control data is

 followed by a header section (encoded with known length or

 indeterminate length according to the framing indicator) and another

 block of control data. This pattern repeats until the control data

 contains a final status code (200 to 599 inclusive).

3.6. Header and Trailer Field Lines

 Header and trailer sections consist of zero or more field lines; see

 Section 5 of [HTTP]. The format of a field section depends on

 whether the message is of known length or indeterminate length.

 Each Field Line encoding includes a name and a value. Both the name

 and value are length-prefixed sequences of bytes. The Name field is

 a minimum of one byte. The format of a Field Line is shown in

 Figure 6.

 Field Line {

 Name Length (i) = 1..,

 Name (..),

 Value Length (i),

 Value (..),

 }

 Figure 6: Format of a Field Line

 For field names, byte values that are not permitted in an HTTP field

 name cause the message to be invalid; see Section 5.1 of [HTTP] for a

 definition of what is valid and Section 4 regarding the handling of

 invalid messages. A recipient MUST treat a message that contains

 field values that would cause an HTTP/2 message to be malformed

 according to Section 8.2.1 of [HTTP/2] as invalid; see Section 4.

 The same field name can be repeated over more than one field line;

 see Section 5.2 of [HTTP] for the semantics of repeated field names

 and rules for combining values.

 Messages are invalid (Section 4) if they contain fields named

 ":method", ":scheme", ":authority", ":path", or ":status". Other

 pseudo-fields that are defined by protocol extensions MAY be

 included; pseudo-fields cannot be included in trailers (see

 Section 8.1 of [HTTP/2]). A Field Line containing pseudo-fields MUST

 precede other Field Line values. A message that contains a pseudo-

 field after any other field is invalid; see Section 4.

 Fields that relate to connections (Section 7.6.1 of [HTTP]) cannot be

 used to produce the effect on a connection in this context. These

 fields SHOULD be removed when constructing a binary message.

 However, they do not cause a message to be invalid (Section 4);

 permitting these fields allows a binary message to capture messages

 that are exchanged in a protocol context.

 Like HTTP/2 or HTTP/3, this format has an exception for the

 combination of multiple instances of the Cookie field. Instances of

 fields with the ASCII-encoded value of "cookie" are combined using a

 semicolon octet (0x3b) rather than a comma; see Section 8.2.3 of

 [HTTP/2].

3.7. Content

 The content of messages is a sequence of bytes of any length. Though

 a known-length message has a limit, this limit is large enough that

 it is unlikely to be a practical limitation. There is no limit to

 the size of content in an indeterminate-length message.

3.8. Padding and Truncation

 Messages can be padded with any number of zero-valued bytes. Non-

 zero padding bytes cause a message to be invalid (see Section 4).

 Unlike other parts of a message, a processor MAY decide not to

 validate the value of padding bytes.

 Truncation can be used to reduce the size of messages that have no

 data in trailing field sections or content. If the trailers of a

 message are empty, they MAY be omitted by the encoder in place of

 adding a length field equal to zero. An encoder MAY omit empty

 content in the same way if the trailers are also empty. A message

 that is truncated at any other point is invalid; see Section 4.

 Decoders MUST treat missing truncated fields as equivalent to having

 been sent with the length field set to zero.

 Padding is compatible with truncation of empty parts of the messages.

 Zero-valued bytes will be interpreted as a zero-length part, which is

 semantically equivalent to the part being absent.

4. Invalid Messages

 This document describes a number of ways that a message can be

 invalid. Invalid messages MUST NOT be processed further except to

 log an error and produce an error response.

 The format is designed to allow incremental processing.

 Implementations need to be aware of the possibility that an error

 might be detected after performing incremental processing.

5. Examples

 This section includes example requests and responses encoded in both

 known-length and indeterminate-length forms.

5.1. Request Example

 The example HTTP/1.1 message in Figure 7 shows the content in the

 "message/http" format.

 Valid HTTP/1.1 messages require lines terminated with CRLF (the two

 bytes 0x0d and 0x0a). For simplicity and consistency, the content of

 these examples is limited to text, which also uses CRLF for line

 endings.

 GET /hello.txt HTTP/1.1

 User-Agent: curl/7.16.3 libcurl/7.16.3 OpenSSL/0.9.7l zlib/1.2.3

 Host: www.example.com

 Accept-Language: en, mi

 Figure 7: Sample HTTP Request

 This can be expressed as a binary message (type "message/bhttp")

 using a known-length encoding as shown in hexadecimal in Figure 8.

 Figure 8 includes text alongside to show that most of the content is

 not modified.

 00034745 54056874 74707300 0a2f6865 ..GET.https../he

 6c6c6f2e 74787440 6c0a7573 65722d61 llo.txt@l.user-a

 67656e74 34637572 6c2f372e 31362e33 gent4curl/7.16.3

 206c6962 6375726c 2f372e31 362e3320 libcurl/7.16.3

 4f70656e 53534c2f 302e392e 376c207a OpenSSL/0.9.7l z

 6c69622f 312e322e 3304686f 73740f77 lib/1.2.3.host.w

 77772e65 78616d70 6c652e63 6f6d0f61 ww.example.com.a

 63636570 742d6c61 6e677561 67650665 ccept-language.e

 6e2c206d 690000 n, mi..

 Figure 8: Known-Length Binary Encoding of Request

 This example shows that the Host header field is not replicated in

 the ":authority" field, as is required for ensuring that the request

 is reproduced accurately; see Section 8.3.1 of [HTTP/2].

 The same message can be truncated with no effect on interpretation.

 In this case, the last two bytes -- corresponding to content and a

 trailer section -- can each be removed without altering the semantics

 of the message.

 The same message, encoded using an indeterminate-length encoding, is

 shown in Figure 9. As the content of this message is empty, the

 difference in formats is negligible.

 02034745 54056874 74707300 0a2f6865 ..GET.https../he

 6c6c6f2e 7478740a 75736572 2d616765 llo.txt.user-age

 6e743463 75726c2f 372e3136 2e33206c nt4curl/7.16.3 l

 69626375 726c2f37 2e31362e 33204f70 ibcurl/7.16.3 Op

 656e5353 4c2f302e 392e376c 207a6c69 enSSL/0.9.7l zli

 622f312e 322e3304 686f7374 0f777777 b/1.2.3.host.www

 2e657861 6d706c65 2e636f6d 0f616363 .example.com.acc

 6570742d 6c616e67 75616765 06656e2c ept-language.en,

 206d6900 00000000 00000000 00000000 mi.............

 Figure 9: Indeterminate-Length Binary Encoding of Request

 This indeterminate-length encoding contains 10 bytes of padding. As

 two additional bytes can be truncated in the same way as the known-

 length example, anything up to 12 bytes can be removed from this

 message without affecting its meaning.

5.2. Response Example

 Response messages can contain interim (1xx) status codes, as the

 message in Figure 10 shows. Figure 10 includes examples of

 informational status codes 102 and 103, as defined in [RFC2518] (now

 obsolete but defines status code 102) and [RFC8297], respectively.

 HTTP/1.1 102 Processing

 Running: "sleep 15"

 HTTP/1.1 103 Early Hints

 Link: </style.css>; rel=preload; as=style

 Link: </script.js>; rel=preload; as=script

 HTTP/1.1 200 OK

 Date: Mon, 27 Jul 2009 12:28:53 GMT

 Server: Apache

 Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT

 ETag: "34aa387-d-1568eb00"

 Accept-Ranges: bytes

 Content-Length: 51

 Vary: Accept-Encoding

 Content-Type: text/plain

 Hello World! My content includes a trailing CRLF.

 Figure 10: Sample HTTP Response

 As this is a longer example, only the indeterminate-length encoding

 is shown in Figure 11. Note here that the specific text used in the

 reason phrase is not retained by this encoding.

 03406607 72756e6e 696e670a 22736c65 .@f.running."sle

 65702031 35220040 67046c69 6e6b233c ep 15".@g.link#<

 2f737479 6c652e63 73733e3b 2072656c /style.css>; rel

 3d707265 6c6f6164 3b206173 3d737479 =preload; as=sty

 6c65046c 696e6b24 3c2f7363 72697074 le.link$</script

 2e6a733e 3b207265 6c3d7072 656c6f61 .js>; rel=preloa

 643b2061 733d7363 72697074 0040c804 d; as=script.@..

 64617465 1d4d6f6e 2c203237 204a756c date.Mon, 27 Jul

 20323030 39203132 3a32383a 35332047 2009 12:28:53 G

 4d540673 65727665 72064170 61636865 MT.server.Apache

 0d6c6173 742d6d6f 64696669 65641d57 .last-modified.W

 65642c20 3232204a 756c2032 30303920 ed, 22 Jul 2009

 31393a31 353a3536 20474d54 04657461 19:15:56 GMT.eta

 67142233 34616133 38372d64 2d313536 g."34aa387-d-156

 38656230 30220d61 63636570 742d7261 8eb00".accept-ra

 6e676573 05627974 65730e63 6f6e7465 nges.bytes.conte

 6e742d6c 656e6774 68023531 04766172 nt-length.51.var

 790f4163 63657074 2d456e63 6f64696e y.Accept-Encodin

 670c636f 6e74656e 742d7479 70650a74 g.content-type.t

 6578742f 706c6169 6e003348 656c6c6f ext/plain.3Hello

 20576f72 6c642120 4d792063 6f6e7465 World! My conte

 6e742069 6e636c75 64657320 61207472 nt includes a tr

 61696c69 6e672043 524c462e 0d0a0000 ailing CRLF.....

 Figure 11: Binary Response, including Informational Responses

 A response that uses the chunked encoding (see Section 7.1 of

 [HTTP/1.1]) as shown in Figure 12 can be encoded using indeterminate-

 length encoding, which minimizes buffering needed to translate into

 the binary format. However, chunk boundaries do not need to be

 retained, and any chunk extensions cannot be conveyed using the

 binary format; see Section 6.

 HTTP/1.1 200 OK

 Transfer-Encoding: chunked

 4

 This

 6

 conte

 13;chunk-extension=foo

 nt contains CRLF.

 0

 Trailer: text

 Figure 12: Chunked Encoding Example

 Figure 13 shows this message using the known-length encoding. Note

 that the Transfer-Encoding header field is removed.

 0140c800 1d546869 7320636f 6e74656e .@...This conten

 7420636f 6e746169 6e732043 524c462e t contains CRLF.

 0d0a0d07 74726169 6c657204 74657874 trailer.text

 Figure 13: Known-Length Encoding of Response

6. Notable Differences with HTTP Protocol Messages

 This format is designed to carry HTTP semantics just like HTTP/1.1

 [HTTP/1.1], HTTP/2 [HTTP/2], or HTTP/3 [HTTP/3]. However, there are

 some notable differences between this format and the format used in

 an interactive protocol version.

 In particular, as a standalone representation, this format lacks the

 following features of the formats used in those protocols:

 * chunk extensions (Section 7.1.1 of [HTTP/1.1]) and transfer

 encoding (Section 6.1 of [HTTP/1.1])

 * generic framing and extensibility capabilities

 * field blocks other than a single header and trailer field block

 * carrying reason phrases in responses (Section 4 of [HTTP/1.1])

 * header compression [HPACK] [QPACK]

 * response framing that depends on the corresponding request (such

 as HEAD) or the value of the status code (such as 204 or 304);

 these responses use the same framing as all other messages

 Some of these features are also absent in HTTP/2 and HTTP/3.

 Unlike HTTP/2 and HTTP/3, this format uses a fixed format for control

 data rather than using pseudo-fields.

 Note that while some messages -- CONNECT or upgrade requests in

 particular -- can be represented using this format, doing so serves

 no purpose, as these requests are used to affect protocol behavior,

 which this format cannot do without additional mechanisms.

7. "message/bhttp" Media Type

 The "message/bhttp" media type can be used to enclose a single HTTP

 request or response message, provided that it obeys the MIME

 restrictions for all "message" types regarding line length and

 encodings.

 Type name: message

 Subtype name: bhttp

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: Only "8bit" or "binary" is permitted.

 Security considerations: See Section 8.

 Interoperability considerations: N/A

 Published specification: RFC 9292

 Applications that use this media type: Applications seeking to

 convey HTTP semantics that are independent of a specific protocol.

 Fragment identifier considerations: N/A

 Additional information: Deprecated alias names for this type: N/A

 Magic number(s): N/A

 File extension(s): N/A

 Macintosh file type code(s): N/A

 Person & email address to contact for further information: See the

 Authors’ Addresses section.

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: See the Authors’ Addresses section.

 Change controller: IESG

8. Security Considerations

 Many of the considerations that apply to HTTP message handling apply

 to this format; see Section 17 of [HTTP] and Section 11 of [HTTP/1.1]

 for common issues in handling HTTP messages.

 Strict parsing of the format with no tolerance for errors can help

 avoid a number of attacks. However, implementations still need to be

 aware of the possibility of resource exhaustion attacks that might

 arise from receiving large messages, particularly those with large

 numbers of fields.

 Implementations need to ensure that they aren’t subject to resource

 exhaustion attacks from maliciously crafted messages. Overall, the

 format is designed to allow for minimal state when processing

 messages. However, producing a combined field value (Section 5.2 of

 [HTTP]) for fields might require the commitment of resources. In

 particular, combining might be necessary for the Cookie field when

 translating this format for use in other contexts, such as use in an

 API or translation to HTTP/1.1 [HTTP/1.1], where the recipient of the

 field might not expect multiple values.

9. IANA Considerations

 IANA has added the media type "message/bhttp" to the "Media Types"

 registry at <https://www.iana.org/assignments/media-types>. See

 Section 7 for registration information.

10. References

10.1. Normative References

 [HTTP] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

 Ed., "HTTP Semantics", STD 97, RFC 9110,

 DOI 10.17487/RFC9110, June 2022,

 <https://www.rfc-editor.org/info/rfc9110>.

 [HTTP/2] Thomson, M., Ed. and C. Benfield, Ed., "HTTP/2", RFC 9113,

 DOI 10.17487/RFC9113, June 2022,

 <https://www.rfc-editor.org/info/rfc9113>.

 [QUIC] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

 Multiplexed and Secure Transport", RFC 9000,

 DOI 10.17487/RFC9000, May 2021,

 <https://www.rfc-editor.org/info/rfc9000>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

10.2. Informative References

 [HPACK] Peon, R. and H. Ruellan, "HPACK: Header Compression for

 HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,

 <https://www.rfc-editor.org/info/rfc7541>.

 [HTTP/1.1] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

 Ed., "HTTP/1.1", STD 99, RFC 9112, DOI 10.17487/RFC9112,

 June 2022, <https://www.rfc-editor.org/info/rfc9112>.

 [HTTP/3] Bishop, M., Ed., "HTTP/3", RFC 9114, DOI 10.17487/RFC9114,

 June 2022, <https://www.rfc-editor.org/info/rfc9114>.

 [QPACK] Krasic, C., Bishop, M., and A. Frindell, Ed., "QPACK:

 Field Compression for HTTP/3", RFC 9204,

 DOI 10.17487/RFC9204, June 2022,

 <https://www.rfc-editor.org/info/rfc9204>.

 [RFC2518] Goland, Y., Whitehead, E., Faizi, A., Carter, S., and D.

 Jensen, "HTTP Extensions for Distributed Authoring --

 WEBDAV", RFC 2518, DOI 10.17487/RFC2518, February 1999,

 <https://www.rfc-editor.org/info/rfc2518>.

 [RFC8297] Oku, K., "An HTTP Status Code for Indicating Hints",

 RFC 8297, DOI 10.17487/RFC8297, December 2017,

 <https://www.rfc-editor.org/info/rfc8297>.

Acknowledgments

 Julian Reschke, David Schinazi, Lucas Pardue, and Tommy Pauly

 provided excellent feedback on both the design and its documentation.

Authors’ Addresses

 Martin Thomson

 Mozilla

 Email: mt@lowentropy.net

 Christopher A. Wood

 Cloudflare

 Email: caw@heapingbits.net

