
ï»¿

Internet Engineering Task Force (IETF) B. Haberman, Ed.
Request for Comments: 9327 JHU
Category: Historic November 2022
ISSN: 2070-1721

 Control Messages Protocol for Use with Network Time Protocol Version 4

Abstract

 This document describes the structure of the control messages that
 were historically used with the Network Time Protocol (NTP) before
 the advent of more modern control and management approaches. These
 control messages have been used to monitor and control the NTP
 application running on any IP network attached computer. The
 information in this document was originally described in Appendix B
 of RFC 1305. The goal of this document is to provide an updated
 description of the control messages described in RFC 1305 in order to
 conform with the updated NTP specification documented in RFC 5905.

 The publication of this document is not meant to encourage the
 development and deployment of these control messages. This document
 is only providing a current reference for these control messages
 given the current status of RFC 1305.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for the historical record.

 This document defines a Historic Document for the Internet community.
 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9327.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Revised BSD License text as described in Section 4.e of the
 Trust Legal Provisions and are provided without warranty as described
 in the Revised BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other

 than English.

Table of Contents

 1. Introduction
 1.1. Terminology
 1.2. Control Message Overview
 1.3. Remote Facility Message Overview
 2. NTP Control Message Format
 3. Status Words
 3.1. System Status Word
 3.2. Peer Status Word
 3.3. Clock Status Word
 3.4. Error Status Word
 4. Commands
 5. IANA Considerations
 6. Security Considerations
 7. References
 7.1. Normative References
 7.2. Informative References
 Appendix A. NTP Remote Facility Message Format
 Acknowledgements
 Contributors
 Author’s Address

1. Introduction

 [RFC1305] describes a set of control messages for use within the
 Network Time Protocol (NTP) when a comprehensive network management
 solution was not available. The definitions of these control
 messages were not promulgated to [RFC5905] when NTP version 4 was
 documented. These messages were intended for use only in systems
 where no other management facilities were available or appropriate,
 such as in dedicated-function bus peripherals. Support for these
 messages is not required in order to conform to [RFC5905]. The
 control messages are described here as a current reference for use
 with an implementation of NTP from RFC 5905.

 The publication of this document is not meant to encourage the
 development and deployment of these control messages. This document
 is only providing a current reference for these control messages
 given the current status of RFC 1305.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Control Message Overview

 The NTP mode 6 control messages are used by NTP management programs
 (e.g., ntpq) when a more robust network management facility (e.g.,
 SNMP) is not available. These control messages provide rudimentary
 control and monitoring functions to manage a running instance of an
 NTP server. These commands are not designed to be used for
 communication between instances of running NTP servers.

 The NTP control message has the value 6 specified in the mode field
 of the first octet of the NTP header and is formatted as shown in
 Figure 1. The format of the data field is specific to each command
 or response; however, in most cases, the format is designed to be
 constructed and viewed by humans and so is coded in free-form ASCII.
 This facilitates the specification and implementation of simple
 management tools in the absence of fully evolved network-management
 facilities. As in ordinary NTP messages, the authenticator field
 follows the data field. If the authenticator is used, the data field
 is zero-padded to a 32-bit boundary, but the padding bits are not
 considered part of the data field and are not included in the field

 count.

 IP hosts are not required to reassemble datagrams over a certain size
 (576 octets for IPv4 [RFC0791] and 1280 octets for IPv6 [RFC8200]);
 however, some commands or responses may involve more data than will
 fit into a single datagram. Accordingly, a simple reassembly feature
 is included in which each octet of the message data is numbered
 starting with zero. As each fragment is transmitted, the number of
 its first octet is inserted in the offset field and the number of
 octets is inserted in the count field. The more-data (M) bit is set
 in all fragments except the last.

 Most control functions involve sending a command and receiving a
 response, perhaps involving several fragments. The sender chooses a
 distinct, nonzero sequence number and sets the status field, "R" bit,
 and "E" bit to zero. The responder interprets the opcode and
 additional information in the data field, updates the status field,
 sets the "R" bit to one and returns the three 32-bit words of the
 header along with additional information in the data field. In the
 case of invalid message format or contents, the responder inserts a
 code in the status field, sets the "R" and "E" bits to one and,
 optionally, inserts a diagnostic message in the data field.

 Some commands read or write system variables (e.g., s.offset) and
 peer variables (e.g., p.stratum) for an association identified in the
 command. Others read or write variables associated with a radio
 clock or other device directly connected to a source of primary
 synchronization information. To identify which type of variable and
 association, the Association ID is used. System variables are
 indicated by the identifier zero. As each association is mobilized a
 unique, nonzero identifier is created for it. These identifiers are
 used in a cyclic fashion, so that the chance of using an old
 identifier that matches a newly created association is remote. A
 management entity can request a list of current identifiers and
 subsequently use them to read and write variables for each
 association. An attempt to use an expired identifier results in an
 exception response, following which the list can be requested again.

 Some exception events, such as when a peer becomes reachable or
 unreachable, occur spontaneously and are not necessarily associated
 with a command. An implementation may elect to save the event
 information for later retrieval, to send an asynchronous response
 (called a trap), or both. In case of a trap, the IP address and port
 number are determined by a previous command and the sequence field is
 set as described below. Current status and summary information for
 the latest exception event is returned in all normal responses. Bits
 in the status field indicate whether an exception has occurred since
 the last response and whether more than one exception has occurred.

 Commands need not necessarily be sent by an NTP peer, so ordinary
 access-control procedures may not apply; however, the optional mask/
 match mechanism suggested in Section 6 provides the capability to
 control access by mode number, so this could be used to limit access
 for control messages (mode 6) to selected address ranges.

1.3. Remote Facility Message Overview

 The original development of the NTP daemon included a Remote Facility
 for monitoring and configuration. This facility used mode 7 commands
 to communicate with the NTP daemon. This document illustrates the
 mode 7 packet format only. The commands embedded in the mode 7
 messages are implementation specific and not standardized in any way.
 The mode 7 message format is described in Appendix A.

2. NTP Control Message Format

 The format of the NTP Control Message header, which immediately
 follows the UDP header, is shown in Figure 1. Following the figure
 is a description of its header fields.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |LI | VN |Mode |R|E|M| opcode | Sequence Number |
 +-+
 | Status | Association ID |
 +-+
 | Offset | Count |
 +-+
 | |
 / Data (up to 468 bytes) /
 | |
 +-+
 | Padding (optional) |
 +-+
 | |
 / Authenticator (optional, 20 or 24 bits) /
 | |
 +-+

 Figure 1: NTP Control Message Header

 Leap Indicator (LI):
 This is a 2-bit integer that is set to b00 for control message
 requests and responses. The Leap Indicator value used at this
 position in most NTP modes is in the system status word provided
 in some control message responses.

 Version Number (VN):
 This is a 3-bit integer indicating a minimum NTP version number.
 NTP servers do not respond to control messages with an
 unrecognized version number. Requests may intentionally use a
 lower version number to enable interoperability with earlier
 versions of NTP. Responses carry the same version as the
 corresponding request.

 Mode:
 This is a 3-bit integer indicating the mode. The value 6
 indicates an NTP control message.

 Response Bit (R):
 Set to zero for commands; set to one for responses.

 Error Bit (E):
 Set to zero for normal responses; set to one for an error
 response.

 More Bit (M):
 Set to zero for the last fragment; set to one for all others.

 Operation Code (opcode):
 This is a 5-bit integer specifying the command function. Values
 currently defined include the following:

 +=======+==+
 | Code | Meaning |
 +=======+==+
 | 0 | reserved |
 +-------+--+
 | 1 | read status command/response |
 +-------+--+
 | 2 | read variables command/response |
 +-------+--+
 | 3 | write variables command/response |
 +-------+--+
 | 4 | read clock variables command/response |
 +-------+--+
 | 5 | write clock variables command/response |
 +-------+--+
 | 6 | set trap address/port command/response |
 +-------+--+
 | 7 | trap response |

 +-------+--+
 | 8 | runtime configuration command/response |
 +-------+--+
 | 9 | export configuration to file command/response |
 +-------+--+
 | 10 | retrieve remote address stats command/response |
 +-------+--+
 | 11 | retrieve ordered list command/response |
 +-------+--+
 | 12 | request client-specific nonce command/response |
 +-------+--+
 | 13-30 | reserved |
 +-------+--+
 | 31 | unset trap address/port command/response |
 +-------+--+

 Table 1: Operation Codes

 Sequence Number:
 This is a 16-bit integer indicating the sequence number of the
 command or response. Each request uses a different sequence
 number. Each response carries the same sequence number as its
 corresponding request. For asynchronous trap responses, the
 responder increments the sequence number by one for each response,
 allowing trap receivers to detect missing trap responses. The
 sequence number of each fragment of a multiple-datagram response
 carries the same sequence number, copied from the request.

 Status:
 This is a 16-bit code indicating the current status of the system,
 peer, or clock with values coded as described in following
 sections.

 Association ID:
 This is a 16-bit unsigned integer identifying a valid association
 or zero for the system clock.

 Offset:
 This is a 16-bit unsigned integer indicating the offset, in
 octets, of the first octet in the data area. The offset is set to
 zero in requests. Responses spanning multiple datagrams use a
 positive offset in all but the first datagram.

 Count:
 This is a 16-bit unsigned integer indicating the length of the
 data field, in octets.

 Data:
 This contains the message data for the command or response. The
 maximum number of data octets is 468.

 Padding (optional):
 Contains zero to 3 octets with a value of zero, as needed to
 ensure the overall control message size is a multiple of 4 octets.

 Authenticator (optional):
 When the NTP authentication mechanism is implemented, this
 contains the authenticator information defined in Appendix C of
 [RFC1305].

3. Status Words

 Status words indicate the present status of the system, associations,
 and clock. They are designed to be interpreted by network-monitoring
 programs and are in one of four 16-bit formats shown in Figure 2 and
 described in this section. System and peer status words are
 associated with responses for all commands except the read clock
 variables, write clock variables, and set trap address/port commands.
 The association identifier zero specifies the system status word,
 while a nonzero identifier specifies a particular peer association.
 The status word returned in response to read clock variables and

 write clock variables commands indicates the state of the clock
 hardware and decoding software. A special error status word is used
 to report malformed command fields or invalid values.

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | LI| Clock Src | Count | Code |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 System Status Word

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Status | SEL | Count | Code |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 Peer Status Word

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Clock Status | Code |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 Radio Status Word

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Error Code | Reserved |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 Error Status Word

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Reserved | Count | Code |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 Clock Status Word

 Figure 2: Status Word Formats

3.1. System Status Word

 The system status word appears in the status field of the response to
 a read status or read variables command with a zero association
 identifier. The format of the system status word is as follows:

 Leap Indicator (LI):
 This is a 2-bit code warning of an impending leap second to be
 inserted/deleted in the last minute of the current day, with bit 0
 and bit 1, respectively, coded as follows:

 +====+===+
 | LI | Meaning |
 +====+===+
 | 00 | no warning |
 +----+---+
 | 01 | insert second after 23:59:59 of the current day |
 +----+---+
 | 10 | delete second 23:59:59 of the current day |
 +----+---+
 | 11 | unsynchronized |
 +----+---+

 Table 2: Leap Indicator Codes

 Clock Source (Clock Src):
 This is a 6-bit integer indicating the current synchronization
 source, with values coded as follows:

 +=======+==+
 | Code | Meaning |
 +=======+==+
 | 0 | unspecified or unknown |
 +-------+--+
 | 1 | Calibrated atomic clock (e.g., PPS, HP 5061) |
 +-------+--+
 | 2 | VLF (band 4) or LF (band 5) radio (e.g., OMEGA,, WWVB) |
 +-------+--+

 | 3 | HF (band 7) radio (e.g., CHU, MSF, WWV/H) |
 +-------+--+
 | 4 | UHF (band 9) satellite (e.g., GOES, GPS) |
 +-------+--+
 | 5 | local net (e.g., DCN, TSP, DTS) |
 +-------+--+
 | 6 | UDP/NTP |
 +-------+--+
 | 7 | UDP/TIME |
 +-------+--+
 | 8 | eyeball-and-wristwatch |
 +-------+--+
 | 9 | telephone modem (e.g., NIST) |
 +-------+--+
 | 10-63 | reserved |
 +-------+--+

 Table 3: Clock Source Values

 System Event Counter (Count):
 This is a 4-bit integer indicating the number of system events
 occurring since the last time the System Event Code changed. Upon
 reaching 15, subsequent events with the same code are not counted.

 System Event Code (Code):
 This is a 4-bit integer identifying the latest system exception
 event, with new values overwriting previous values, and coded as
 follows:

 +======+==+
 | Code | Meaning |
 +======+==+
 | 0 | unspecified |
 +------+--+
 | 1 | frequency correction (drift) file not available |
 +------+--+
 | 2 | frequency correction started (frequency stepped) |
 +------+--+
 | 3 | spike detected and ignored, starting stepout timer |
 +------+--+
 | 4 | frequency training started |
 +------+--+
 | 5 | clock synchronized |
 +------+--+
 | 6 | system restart |
 +------+--+
 | 7 | panic stop (required step greater than panic threshold) |
 +------+--+
 | 8 | no system peer |
 +------+--+
 | 9 | leap second insertion/deletion armed for the current |
 | | month |
 +------+--+
 | 10 | leap second disarmed |
 +------+--+
 | 11 | leap second inserted or deleted |
 +------+--+
 | 12 | clock stepped (stepout timer expired) |
 +------+--+
 | 13 | kernel loop discipline status changed |
 +------+--+
 | 14 | leapseconds table loaded from file |
 +------+--+
 | 15 | leapseconds table outdated, updated file needed |
 +------+--+

 Table 4: System Event Codes

3.2. Peer Status Word

 A peer status word is returned in the status field of a response to a

 read status, read variables, or write variables command and appears
 in the list of Association IDs and status words returned by a read
 status command with a zero Association ID. The format of a peer
 status word is as follows:

 Peer Status (Status):
 This is a 5-bit code indicating the status of the peer determined
 by the packet procedure, with bits assigned as follows:

 +=================+==+
 | Peer Status bit | Meaning |
 +=================+==+
 | 0 | configured (peer.config) |
 +-----------------+--+
 | 1 | authentication enabled (peer.authenable) |
 +-----------------+--+
 | 2 | authentication okay (peer.authentic) |
 +-----------------+--+
 | 3 | reachability okay (peer.reach != 0) |
 +-----------------+--+
 | 4 | broadcast association |
 +-----------------+--+

 Table 5: Peer Status Bits

 Peer Selection (SEL):
 This is a 3-bit integer indicating the status of the peer
 determined by the clock-selection procedure, with values coded as
 follows:

 +=====+===+
 | Sel | Meaning |
 +=====+===+
 | 0 | rejected |
 +-----+---+
 | 1 | discarded by intersection algorithm |
 +-----+---+
 | 2 | discarded by table overflow (not currently used) |
 +-----+---+
 | 3 | discarded by the cluster algorithm |
 +-----+---+
 | 4 | included by the combine algorithm |
 +-----+---+
 | 5 | backup source (with more than sys.maxclock survivors) |
 +-----+---+
 | 6 | system peer (synchronization source) |
 +-----+---+
 | 7 | PPS (pulse per second) peer |
 +-----+---+

 Table 6: Peer Selection Values

 Peer Event Counter (Count):
 This is a 4-bit integer indicating the number of peer exception
 events that occurred since the last time the peer event code
 changed. Upon reaching 15, subsequent events with the same code
 are not counted.

 Peer Event Code (Code):
 This is a 4-bit integer identifying the latest peer exception
 event, with new values overwriting previous values, and coded as
 follows:

 +=================+===================================+
 | Peer Event Code | Meaning |
 +=================+===================================+
 | 0 | unspecified |
 +-----------------+-----------------------------------+
 | 1 | association mobilized |
 +-----------------+-----------------------------------+
 | 2 | association demobilized |

 +-----------------+-----------------------------------+
 | 3 | peer unreachable (peer.reach was |
 | | nonzero now zero) |
 +-----------------+-----------------------------------+
 | 4 | peer reachable (peer.reach was |
 | | zero now nonzero) |
 +-----------------+-----------------------------------+
 | 5 | association restarted or timed |
 | | out |
 +-----------------+-----------------------------------+
 | 6 | no reply (only used with one-shot |
 | | clock set command) |
 +-----------------+-----------------------------------+
 | 7 | peer rate limit exceeded (kiss |
 | | code RATE received) |
 +-----------------+-----------------------------------+
 | 8 | access denied (kiss code DENY |
 | | received) |
 +-----------------+-----------------------------------+
 | 9 | leap second insertion/deletion at |
 | | month’s end armed by peer vote |
 +-----------------+-----------------------------------+
 | 10 | became system peer (sys.peer) |
 +-----------------+-----------------------------------+
 | 11 | reference clock event (see clock |
 | | status word) |
 +-----------------+-----------------------------------+
 | 12 | authentication failed |
 +-----------------+-----------------------------------+
 | 13 | popcorn spike suppressed by peer |
 | | clock filter register |
 +-----------------+-----------------------------------+
 | 14 | entering interleaved mode |
 +-----------------+-----------------------------------+
 | 15 | recovered from interleave error |
 +-----------------+-----------------------------------+

 Table 7: Peer Event Code Values

3.3. Clock Status Word

 There are two ways a reference clock can be attached to an NTP
 service host: as a dedicated device managed by the operating system
 and as a synthetic peer managed by NTP. As in the read status
 command, the Association ID is used to identify the correct variable
 for each clock: zero for the system clock and nonzero for a peer
 clock. Only one system clock is supported by the protocol, although
 many peer clocks can be supported. A system or peer clock status
 word appears in the status field of the response to a read clock
 variables or write clock variables command. This word can be
 considered to be an extension of the system status word or the peer
 status word as appropriate. The format of the clock status word is
 as follows:

 Reserved:
 This is an 8-bit integer that is ignored by requesters and zeroed
 by responders.

 Count:
 This is a 4-bit integer indicating the number of clock events that
 occurred since the last time the clock event code changed. Upon
 reaching 15, subsequent events with the same code are not counted.

 Clock Code (Code):
 This is a 4-bit integer indicating the current clock status, with
 values coded as follows:

 +==============+=================================+
 | Clock Status | Meaning |
 +==============+=================================+
 | 0 | clock operating within nominals |

 +--------------+---------------------------------+
 | 1 | reply timeout |
 +--------------+---------------------------------+
 | 2 | bad reply format |
 +--------------+---------------------------------+
 | 3 | hardware or software fault |
 +--------------+---------------------------------+
 | 4 | propagation failure |
 +--------------+---------------------------------+
 | 5 | bad date format or value |
 +--------------+---------------------------------+
 | 6 | bad time format or value |
 +--------------+---------------------------------+
 | 7-15 | reserved |
 +--------------+---------------------------------+

 Table 8: Clock Code Values

3.4. Error Status Word

 An error status word is returned in the status field of an error
 response as the result of invalid message format or contents. Its
 presence is indicated when the E (error) bit is set along with the
 response (R) bit in the response. It consists of an 8-bit integer
 coded as follows:

 +==============+==================================+
 | Error Status | Meaning |
 +==============+==================================+
 | 0 | unspecified |
 +--------------+----------------------------------+
 | 1 | authentication failure |
 +--------------+----------------------------------+
 | 2 | invalid message length or format |
 +--------------+----------------------------------+
 | 3 | invalid opcode |
 +--------------+----------------------------------+
 | 4 | unknown Association ID |
 +--------------+----------------------------------+
 | 5 | unknown variable name |
 +--------------+----------------------------------+
 | 6 | invalid variable value |
 +--------------+----------------------------------+
 | 7 | administratively prohibited |
 +--------------+----------------------------------+
 | 8-255 | reserved |
 +--------------+----------------------------------+

 Table 9: Error Status Word Codes

4. Commands

 Commands consist of the header and optional data field shown in
 Figure 1. When present, the data field contains a list of
 identifiers or assignments in the form
 <<identifier>>[=<<value>>],<<identifier>>[=<<value>>],... where
 <<identifier>> is the ASCII name of a system or peer variable such as
 the ones specified in RFC 5905 and <<value>> is expressed as a
 decimal, hexadecimal, or string constant in the syntax of the C
 programming language. Where no ambiguity exists, the "sys." or
 "peer." prefixes can be suppressed. Space characters (ASCII
 nonprinting format effectors) can be added to improve readability for
 simple monitoring programs that do not reformat the data field.
 Representations of note are as follows:

 * IPv4 internet addresses are written in the form [n.n.n.n], where n
 is in decimal notation and the brackets are optional

 * IPv6 internet addresses are formulated based on the guidelines
 defined in [RFC5952].

 * Timestamps (including reference, originate, receive, and transmit
 values) and the logical clock are represented in units of seconds
 and fractions, preferably in hexadecimal notation.

 * Delay, offset, dispersion, and distance values are represented in
 units of milliseconds and fractions, preferably in decimal
 notation.

 * All other values are represented as is, preferably in decimal
 notation.

 Implementations may define variables other than those described in
 RFC 5905; called "extramural variables", these are distinguished by
 the inclusion of some character type other than alphanumeric or "."
 in the name. For those commands that return a list of assignments in
 the response data field, if the command data field is empty, it is
 expected that all available variables defined in RFC 5905 will be
 included in the response. For the read commands, if the command data
 field is nonempty, an implementation may choose to process this field
 to individually select which variables are to be returned.

 Commands are interpreted as follows:

 Read Status (1):
 The command data field is empty or contains a list of identifiers
 separated by commas. The command operates in two ways depending
 on the value of the Association ID. If this identifier is
 nonzero, the response includes the peer identifier and status
 word. Optionally, the response data field may contain other
 information, such as described in the Read Variables command. If
 the association identifier is zero, the response includes the
 system identifier (0) and status word; the data field contains a
 list of binary-coded pairs <<Association ID>> <<status word>>, one
 for each currently defined association.

 Read Variables (2):
 The command data field is empty or contains a list of identifiers
 separated by commas. If the Association ID is nonzero, the
 response includes the requested peer identifier and status word;
 the data field contains a list of peer variables and values as
 described above. If the Association ID is zero, the data field
 contains a list of system variables. If a peer has been selected
 as the synchronization source, the response includes the peer
 identifier and status word; otherwise, the response includes the
 system identifier (0) and status word.

 Write Variables (3):
 The command data field contains a list of assignments as described
 above. The variables are updated as indicated. The response is
 as described for the Read Variables command.

 Read Clock Variables (4):
 The command data field is empty or contains a list of identifiers
 separated by commas. The Association ID selects the system clock
 variables or peer clock variables in the same way as in the Read
 Variables command. The response includes the requested clock
 identifier and status word; the data field contains a list of
 clock variables and values, including the last timecode message
 received from the clock.

 Write Clock Variables (5):
 The command data field contains a list of assignments as described
 above. The clock variables are updated as indicated. The
 response is as described for the read clock variables command.

 Set Trap Address/Port (6):
 The command Association ID, status, and data fields are ignored.
 The address and port number for subsequent trap messages are taken
 from the source address and port of the control message itself.
 The initial trap counter for trap response messages is taken from
 the sequence field of the command. The response association

 identifier, status, and data fields are not significant.
 Implementations should include logical timeouts that prevent trap
 transmissions if the monitoring program does not renew this
 information after a lengthy interval.

 Trap Response (7):
 This message is sent when a system, peer, or clock exception event
 occurs. The opcode field is 7 and the R bit is set. The trap
 counter is incremented by one for each trap sent and the sequence
 field set to that value. The trap message is sent using the IP
 address and port fields established by the set trap address/port
 command. If a system trap, the Association ID field is set to
 zero and the status field contains the system status word. If a
 peer trap, the Association ID field is set to that peer and the
 status field contains the peer status word. Optional ASCII-coded
 information can be included in the data field.

 Configure (8):
 The command data is parsed and applied as if supplied in the
 daemon configuration file.

 Save Configuration (9):
 Writes a snapshot of the current configuration to the file name
 supplied as the command data. Further, the command is refused
 unless a directory in which to store the resulting files has been
 explicitly configured by the operator.

 Read Most Recently Used (MRU) list (10):
 Retrieves records of recently seen remote addresses and associated
 statistics. This command supports all of the state variables
 defined in Section 9 of [RFC5905]. Command data consists of
 name=value pairs controlling the selection of records, as well as
 a requestor-specific nonce previously retrieved using this command
 or opcode 12 (Request Nonce). The response consists of name=value
 pairs where some names can appear multiple times using a dot
 followed by a zero-based index to distinguish them and to
 associate elements of the same record with the same index. A new
 nonce is provided with each successful response.

 Read ordered list (11):
 Retrieves a list ordered by IP address (IPv4 information precedes
 IPv6 information). If the command data is empty or is the seven
 characters "ifstats", the associated statistics, status, and
 counters for each local address are returned. If the command data
 is the characters "addr_restrictions", then the set of IPv4 remote
 address restrictions followed by the set of IPv6 remote address
 restrictions (access control lists) are returned. Other command
 data returns error code 5 (unknown variable name). Similar to
 Read MRU, response information uses zero-based indexes as part of
 the variable name preceding the equals sign and value, where each
 index relates information for a single address or network. This
 opcode requires authentication.

 Request Nonce (12):
 Retrieves a 96-bit nonce specific to the requesting remote
 address, which is valid for a limited period. Command data is not
 used in the request. The nonce consists of a 64-bit NTP timestamp
 and 32 bits of hash derived from that timestamp, the remote
 address, and salt known only to the server, which varies between
 daemon runs. Inclusion of the nonce by a management agent
 demonstrates to the server that the agent can receive datagrams
 sent to the source address of the request, making source address
 "spoofing" more difficult in a similar way as TCP’s three-way
 handshake.

 Unset Trap (31):
 Removes the requesting remote address and port from the list of
 trap receivers. Command data is not used in the request. If the
 address and port are not in the list of trap receivers, the error
 code is 4 (bad association).

5. IANA Considerations

 This document has no IANA actions.

6. Security Considerations

 A number of security vulnerabilities have been identified with these
 control messages.

 NTP’s control query interface allows reading and writing of system,
 peer, and clock variables remotely from arbitrary IP addresses using
 commands mentioned in Section 4. Overwriting these variables, but
 not reading them, requires authentication by default. However, this
 document argues that an NTP host must authenticate all control
 queries and not just ones that overwrite these variables.
 Alternatively, the host can use an access control list to explicitly
 list IP addresses that are allowed to control query the clients.
 These access controls are required for the following reasons:

 NTP as a Distributed Denial-of-Service (DDoS) vector:
 NTP timing query and response packets (modes 1-2, 3-4, and 5) are
 usually short in size. However, some NTP control queries generate
 a very long packet in response to a short query. As such, there
 is a history of use of NTP’s control queries, which exhibit such
 behavior, to perform DoS attacks. These off-path attacks exploit
 the large size of NTP control queries to cause UDP-based
 amplification attacks (e.g., mode 7 monlist command generates a
 very long packet in response to a small query [CVE-DOS]). These
 attacks only use NTP as a vector for DoS attacks on other
 protocols, but do not affect the time service on the NTP host
 itself. To limit the sources of these malicious commands, NTP
 server operators are recommended to deploy ingress filtering
 [RFC3704].

 Time-shifting attacks through information leakage/overwriting:
 NTP hosts save important system and peer state variables. An off-
 path attacker who can read these variables remotely can leverage
 the information leaked by these control queries to perform time-
 shifting and DDoS attacks on NTP clients. These attacks do affect
 time synchronization on the NTP hosts. For instance:

 * In the client/server mode, the client stores its local time when
 it sends the query to the server in its xmt peer variable. This
 variable is used to perform TEST2 to non-cryptographically
 authenticate the server (i.e., if the origin timestamp field in
 the corresponding server response packet matches the xmt peer
 variable, then the client accepts the packet). An off-path
 attacker with the ability to read this variable can easily spoof
 server response packets for the client, which will pass TEST2 and
 can deny service or shift time on the NTP client. The specific
 attack is described in [CVE-SPOOF].

 * The client also stores its local time when the server response is
 received in its rec peer variable. This variable is used for
 authentication in interleaved-pivot mode. An off-path attacker
 with the ability to read this state variable can easily shift time
 on the client by passing this test. This attack is described in
 [CVE-SHIFT].

 Fast-Scanning:
 NTP mode 6 control messages are usually small UDP packets. Fast-
 scanning tools like ZMap can be used to spray the entire
 (potentially reachable) Internet with these messages within hours
 to identify vulnerable hosts. To make things worse, these attacks
 can be extremely low-rate, only requiring a control query for
 reconnaissance and a spoofed response to shift time on vulnerable
 clients.

 The mode 6 and 7 messages are vulnerable to replay attacks
 [CVE-Replay]:
 If an attacker observes mode 6/7 packets that modify the

 configuration of the server in any way, the attacker can apply the
 same change at any time later by simply sending the packets to the
 server again. The use of the nonce (Request Nonce command)
 provides limited protection against replay attacks.

 NTP best practices recommend configuring NTP with the no-query
 parameter. The no-query parameter blocks access to all remote
 control queries. However, sometimes the hosts do not want to block
 all queries and want to give access for certain control queries
 remotely. This could be for the purpose of remote management and
 configuration of the hosts in certain scenarios. Such hosts tend to
 use firewalls or other middleboxes to blacklist certain queries
 within the network.

 Significantly fewer hosts respond to mode 7 monlist queries as
 compared to other control queries because it is a well-known and
 exploited control query. These queries are likely blocked using
 blacklists on firewalls and middleboxes rather than the no-query
 option on NTP hosts. The remaining control queries that can be
 exploited likely remain out of the blacklist because they are
 undocumented in the current NTP specification [RFC5905].

 This document describes all of the mode 6 control queries allowed by
 NTP and can help administrators make informed decisions on security
 measures to protect NTP devices from harmful queries and likely make
 those systems less vulnerable. The use of the legacy mode 6
 interface is NOT RECOMMENDED. Regardless of which mode 6 commands an
 administrator may elect to allow, remote access to this facility
 needs to be protected from unauthorized access (e.g., strict Access
 Control Lists (ACLs)). Additionally, the legacy interface for mode 6
 commands SHOULD NOT be utilized in new deployments or implementation
 of NTP.

7. References

7.1. Normative References

 [RFC1305] Mills, D., "Network Time Protocol (Version 3)
 Specification, Implementation and Analysis", RFC 1305,
 DOI 10.17487/RFC1305, March 1992,
 <https://www.rfc-editor.org/info/rfc1305>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3704] Baker, F. and P. Savola, "Ingress Filtering for Multihomed
 Networks", BCP 84, RFC 3704, DOI 10.17487/RFC3704, March
 2004, <https://www.rfc-editor.org/info/rfc3704>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC5952] Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
 Address Text Representation", RFC 5952,
 DOI 10.17487/RFC5952, August 2010,
 <https://www.rfc-editor.org/info/rfc5952>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

 [CVE-DOS] NIST National Vulnerability Database, "CVE-2013-5211
 Detail", 2 January 2014,
 <https://nvd.nist.gov/vuln/detail/CVE-2013-5211>.

 [CVE-Replay]
 NIST National Vulnerability Database, "CVE-2015-8140
 Detail", 30 January 2015,
 <https://nvd.nist.gov/vuln/detail/CVE-2015-8140>.

 [CVE-SHIFT]
 NIST National Vulnerability Database, "CVE-2016-1548
 Detail", 6 January 2017,
 <https://nvd.nist.gov/vuln/detail/CVE-2016-1548>.

 [CVE-SPOOF]
 NIST National Vulnerability Database, "CVE-2015-8139
 Detail", 30 January 2017,
 <https://nvd.nist.gov/vuln/detail/CVE-2015-8139>.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 DOI 10.17487/RFC0791, September 1981,
 <https://www.rfc-editor.org/info/rfc791>.

 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

Appendix A. NTP Remote Facility Message Format

 The format of the NTP Remote Facility Message header, which
 immediately follows the UDP header, is shown in Figure 3. A
 description of its fields follows Figure 3. Bit positions marked as
 zero are reserved and should always be transmitted as zero.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |R|M| VN |Mode |A| Sequence | Implementation| Req Code |
 +-+
 | Err | Count | MBZ | Size |
 +-+
 | |
 / Data (up to 500 bytes) /
 | |
 +-+
 | Encryption KeyID (when A bit set) |
 +-+
 | |
 / Message Authentication Code (when A bit set) /
 | |
 +-+

 Figure 3: NTP Remote Facility Message Header

 Response Bit (R):
 Set to 0 if the packet is a request. Set to 1 if the packet is a
 response.

 More Bit (M):
 Set to 0 if this is the last packet in a response; otherwise, set
 to 1 in responses requiring more than one packet.

 Version Number (VN):
 Set to the version number of the NTP daemon.

 Mode:
 Set to 7 for Remote Facility messages.

 Authenticated Bit (A):
 If set to 1, this packet contains authentication information.

 Sequence:
 For a multi-packet response, this field contains the sequence
 number of this packet. Packets in a multi-packet response are

 numbered starting with 0. The More Bit is set to 1 for all
 packets but the last.

 Implementation:
 The version number of the implementation that defined the request
 code used in this message. An implementation number of 0 is used
 for a request code supported by all versions of the NTP daemon.
 The value 255 is reserved for future extensions.

 Request Code (Req Code):
 An implementation-specific code that specifies the operation being
 requested. A request code definition includes the format and
 semantics of the data included in the packet.

 Error (Err):
 Set to 0 for a request. For a response, this field contains an
 error code relating to the request. If the Error is nonzero, the
 operation requested wasn’t performed.

 0: no error

 1: incompatible implementation number

 2: unimplemented request code

 3: format error

 4: no data available

 7: authentication failure

 Count:
 The number of data items in the packet. Range is 0 to 500.

 Must Be Zero (MBZ):
 A reserved field set to 0 in requests and responses.

 Size:
 The size of each data item in the packet. Range is 0 to 500.

 Data:
 A variable-sized field containing request/response data. For
 requests and responses, the size in octets must be greater than or
 equal to the product of the number of data items (Count) and the
 size of a data item (Size). For requests, the data area is
 exactly 40 octets in length. For responses, the data area will
 range from 0 to 500 octets, inclusive.

 Encryption KeyID:
 A 32-bit unsigned integer used to designate the key used for the
 Message Authentication Code. This field is included only when the
 A bit is set to 1.

 Message Authentication Code:
 An optional Message Authentication Code defined by the version of
 the NTP daemon indicated in the Implementation field. This field
 is included only when the A bit is set to 1.

Acknowledgements

 Tim Plunkett created the original version of this document. Aanchal
 Malhotra provided the initial version of the Security Considerations
 section.

 Karen O’Donoghue, David Hart, Harlan Stenn, and Philip Chimento
 deserve credit for portions of this document due to their earlier
 efforts to document these commands.

 Miroshav Lichvar, Ulrich Windl, Dieter Sibold, J Ignacio Alvarez-
 Hamelin, and Alex Campbell provided valuable comments on various
 draft versions of this document.

Contributors

 Dr. David Mills specified the vast majority of the mode 6 commands
 during the development of [RFC1305] and deserves the credit for their
 existence and use.

Author’s Address

 Brian Haberman (editor)
 JHU
 Email: brian@innovationslab.net

